EXHIBIT S27 TO DECLARATION OF STEPHEN G. SCHWARZ IN SUPPORT OF PLAINTIFFS' MOTION FOR CLASS CERTIFICATION

Oral Teratology Study of FC-95 in Rats

Experiment No.:

Ղ

-

n in National Anna 1997. 1997

Conducted At:

Dosing Period:

Study Director:

0680TR0008

Safety Evaluation Laboratory Riker Laboratories, Inc. St. Paul, Minnesota

July 14, 1980 through July 24, 1980

E. G. Gortner

12/17/80 Ξ.

E. G. Gortner Date Senior Research Technologist Animal Reproduction-Teratology Study Director

12/17/50 Lampueix Date

E. G. Lamprecht Research Veterinary Pathologist

М.

M. T. Case, DVM, PhD Date Manager, Pathology-Toxicology Safety Evaluation Laboratory

Summary

. . .

÷

Oral administration of FC-95 at doses of 10, 5 and 1 mg/kg/day to pregnant Sprague-Dawley rats during days 6 through 15 of gestation (period of organogenesis) resulted in fetuses with teratogenic changes in the lens of the eye. The teratogenic effect was a developmental eye abnormality which appeared to be an arrest in development of the primary lens fibers forming the embryonal lens nucleus, followed by secondary aberrations of the secondary lens fibers of the fetal nucleus. The lens abnormality occurred in all FC-95 dose groups, but the proportion of fetuses with the lens changes was significantly higher than the control group only in the 10 mg/kg/day group.

FC-95 administration was maternally toxic only to the 10 mg/kg/day group. At gestation days 12 through 20 their mean maternal body weights were significantly lower than the controls. FC-95 was not maternally toxic to the 5 and 1 mg/kg/day groups.

FC-95 was not embryotoxic and did not affect the ovaries or reproductive tract contents of the dams. The compound did not produce an increase in the number or proportion of abnormal fetal skeleton aberrations.

1

1247.0002

Introduction

This teratology study a of FC-95 in rats was conducted to evaluate the embryotoxic and teratogenic effects of orally administered FC-95. The study was sponsored by 3M Commerical Chemical Division, St. Paul, Minnesota and was conducted by the Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesota. The compound administration period was from July 14 through July 24, 1980. The protocol and list of the principal participants and supervisory personnel can be found in Appendices I and II respectively.

All portions of this study were conducted according to the Good Laboratory Practice (GLP) regulations and the Safety Evaluation Laboratory Standard Operating Procedures (see Appendix III for Quality Assurance Unit statement). The storage location for specimens, raw data and a copy of the final report is maintained in the Safety Evaluation Laboratory's record archives.

<u>Methods</u>

Time mated Spraque-Dawley derived rats were obtained from Charles River Breeding Laboratory and assigned cages according to a computer-generated random numbers table. The rats were then divided into four groups of 22 animals weighing 175 to 261 grams. The rats were housed individually in hanging stainless steel cages with wire mesh floors and fronts in a temperature and humidity controlled room. Food— and water were available ad libitum. The lights were on a 12 hour light/dark cycle.

The animals were observed daily from day 3 through day 20 of gestation for abnormal clinical signs. Body weights were recorded on days 3, 6, 9, 12, 15 and 20 of gestation and the rats dosed accordingly using a constant dose volume of 5 ml/kg of body weight. The four groups were dosed with FC-95 (Lot 640) suspended daily in corn oil at 0, 10, 5 or 1 mg/kg/day. FC-95 was administered daily by oral intubation with a syringe equipped with a ball-tipped intubation needle to the rats on days 6 through 15 of gestation (day 0 indicated by sperm-positive vaginal smear). FC-95 analytical characterization (see Appendix IV) was provided by 3M Commercial Chemical Division, St. Paul, Minnesota.

All animals were sacrificed on day 20 by cervical dislocation and the ovaries and uterus, including its contents, were examined immediately to determine the following: number of corpora lutea, number of viable fetuses, number of resorption sites, pup weights and sex, and any gross fetal abnormalities. Approximately one-third of the fetuses were fixed in Bouin's solution for subsequent free-hand sectioning by the Wilson technique to determine visceral abnormalities. The remaining fetuses were preserved in alcohol for clearing and staining of the skeleton with alizarin red to detect skeletal abnormalities. Selected free-hand sections were processed for histological evaluation.

<u>a</u> Riker Experiment No. 0680TR0008 <u>b</u> Purina Laboratory Chow, Ralston Purina Company, St. Louis, MO

Results

FC-95 administered during the period of organogenesis was toxic to the high dose group (10 mg/kg/day) maternal rats. The mean body weights of all dose groups were similar at gestation days three through nine (Table 1, Appendix V). At gestation days 12 through 20 the high dose group rats weighed significantly less than controls (0 mg/kg/day). The mean maternal body weights of mid (5 mg/kg/day) and low (1 mg/kg/day) dose groups were not different from the controls throughout the study. Even though FC-95 was maternally toxic at the high dose level, no compound-related clinical signs were observed in any of the dose groups.

FC-95 was not embryotoxic and did not affect the ovaries or reproductive tract contents of the dams. The mean number of male, female, total and dead fetuses; the mean number of resorption sites, implantation sites, corpora lutea and mean fetus weights of the three FC-95 dose groups were not significantly different from the controls (Table 2, Appendix VI). The high dose group did have a lower mean number of viable male, female and total fetuses than the other three groups which resulted from a lower number of embryos at the start of the study. Contributing pieces of evidence to the lower number of high dose embryos are the low mean number of implantation sites, corpora lutes, resorption sites and the absence of dead fetuses.

FC-95 did not cause compound-related abnormal gross fetal findings (Table 3), nor did FC-95 treatment produce an increase in the number or proportion of abnormal fetal skeletal aberrations. Fetal skeleton results of the three compound treated groups were not significantly different from the control group (Table 4). The incidence and proportions of sternebrae nonossified and associated changes of sternebrae assymetrical, sternebrae bipartite and one sternebrae missing were unusually high in all dose groups of this study including the control group.

FC-95 was teratogenic in the rat at all dose levels administered in this study. The teratogenic effect was a developmental eye abnormality which appeared to be an arrest in development of the primary lens fibers forming the embryonal lens nucleus, followed by secondary aberrations of the secondary lens fibers of the fetal nucleus. All eye abnormalities were localized to the area of the embryonal lens nucleus although a variety of morphological appearances were present within that location. The range of morphological appearances as observed under the dissecting microscope varied from a slight discoloration of the lens near the anterior margin to a dark colored oval area, often containing a cleft, extending from beneath the lens epithelium to half-way through the lens posteriorly. Histologically the discolorations were due to presence of lens vesicle remnants surrounding the abnormal embryonal lens nucleus. One of the most severly affected eyes had most of the embryonal lens nucleus replaced by sinus spaces containing red blood cells. Also contributing to the discolorations were primary lens fibers which appeared to have not elongated. These lens fibers were tortuous and lacked nuclei in a normal lens bow of nuclei. Secondary lens fiber development progressed normally except immediately surrounding the abnormal embryonal nucleus. Secondary aberrations of secondary lens fibers included the bending of the fibers around the abnormal oval area, the subsequent formation of prominant anterior and posterior Y sutures of the converging fibers and lens vesicle remnants surrounding the embryonal nucleus.

The lens abnormality occurred in all dose groups except the control group. The proportion of fetuses with the lens abnormality in one or both lenses was significantly higher in the high dose group than the control (Table 5). The lens abnormality recorded for one control fetus under the dissecting microscope was an artifact when evaluated by transmission light microscopy. A no-effect dose level for the teratogenic lens abnormality was not established in this study.

Discussion

and the second sec

Optimal visual functional requirements are met during embryonic development by the differentiation of highly specialized populations of cells from undifferentiated precoursers and by the coordinated morphogenesis of the resulting tissues. Both processes are controlled to a remarkable extent by interactions which occur among emerging tissues. Each tissue of the eye is brought to its final state of differentiation, its cell population size and its definitive geometry, not only by intrinsic processes, but also by extrinsic influences exerted by neighboring tissues¹.

The embryonal origin of the lens is undifferentiated ectoderm. The tip of the optic vesicle, presumably the neural retina, plays the final role in inducing lens from overlying ectoderm and in aligning the lens precisely with the rest of the eye. Alternative or sequential action of tissues derived from endoderm (foregut) and mesoderm (heart) on the same target tissue decreases the probability that lens formation would be aborted by accidents during the early phases of induction. While the nature of the inductive influence remains unknown, there are indications that substances may be transferred from the presumptive neural retina to the overlying ectoderm during induction. A prolonged period of inductive interaction not only increases the probability that lens induction will occur successfully in the face of interference, but provides a mechanism for continuously adjusting the size, shape, position and orientation of the lens to that of the retina².

During the early stages of the inductive process, the ectodermal cells immediately overlying the tip of the optic vesicle elongate prependicularly to the body surface to form a thickened disc (lens placode). The change in cell shape is accomplished without change in cell volume. The number of cells, however, continues to increase during this period. Toward the end of lens placode formation, acidophilic fibrils appear in the apices of the lens placode cells. At about this time, the placode invaginates to form the lens cup. This invagination is independent of the concomitant invagination of the underlying optic vesicle, and is probably due to forces operating within the lens ectoderm. As the lens cup deepens, its opening (lens pore) becomes progressively constricted until its lips meet and fuse, cutting off the lens vesicle internally and re-establishing continuity in the overlying ectoderm. Closure of the lens pore is attended by, and possibly accomplished by, a local and temporaty restricted wave of cell death. Following closure of the lens pore, the cells at the back of the lens vesicle continue to elongate, under the influence of the neural retina, to form the lens fibers. As the fibers grow the cavity of the lens vesicle is obliterated. The lens cells toward the ectoderm, which do not elongate further, form the ·lens epithelium².

The cuboidal lens epithelial cells which face the cornea continue to grow after the lens vesicle forms. As the cells rotate through the equator region, they take their places on the surface of the growing fiber mass. These cells differentiate into secondary lens fibers at the equator and elongate rapidly toward the poles of the lens where they meet with other fibers in planes of junction called sutures. As secondary fibers grow their nuclei become positioned at about the center of the fibers and form a convex lens bow outward. Since the newer fibers are always deposited superficially, the oldest fibers in the lens come to lie centrally and are referred to collectively as the lens nucleus. With time the lens cell nuclei in this region become pycnotic and finally disappear. The cell fibers, however, are not broken down and removed but remain in place. Thus the size and shape of the lens are controlled by factors which control the number, size and shape of lens cells².

The teratogenic effect of FC-95 probably occurred during the portion of organogenesis between differentiation of lens tissue from ectoderm and the formation of secondary lens fibers surrounding the embryonal lens nucleus. The exact time of the teratogenic insult and the morphogenesis of the abnormality were not determined in the study. The developmental lens abnormality appears to be unique because it has not been described as a compound-related abnormality³. • A similar-appearing structural lens abnormality has been reported to occur spontaneously in rat fetuses, but with a very low incidence of $1.2x^4$. The abnormality resembles the Fraser developmental lens abnormality of a mutant mouse strain which results from degenerative primary lens cells⁵.

References

- Coulombre AJ, Coulombre JL: Abnormal Organogenesis of the Eye, in Wilson J., Fraser FC (eds): <u>Handbook of Teratology:2 Mechanisms</u> and Pathogenesis. New York, Plenum Press, 1977, pp 329-341.
- Coulombre AJ: The Eye, in DeHaan RL, Ursprung H (eds): Organogenesis. New York, Holt Rinehart and Winston, 1965, pp 227-232.
- 3. Mann I: <u>Development Abnormalities of the Eye</u>, 2nd ed. Philadelphia, JB Lippincott Co., 1957.
- Weisse I, Niggeschulze A, Stotzer H: Spontaneous congenital cataracts in rats, mice and rabbits. Archiv Fuer Toxikologie <u>32</u>: pp 199-207, 1974.
- Hamai Y, Kuwabara T: Early cytologic changes of Fraser cataract. An electron microscopic study. Investigative Ophthalmology <u>14</u> (7): pp 517-527, 1975.

Table 1

,

. . .

. ~

Oral Teratology Study of PC-95 in Rats Mean Maternal Body Weights with Standard Deviations

Dose	······································			Gestat	ion Da	uy		
Group	· · · · · · · · · · · · · · · · · · ·	3	6	9	12	15	20	
0 mg/kg/day	MERN STAN. DEV	200 16. 7	223 17.6	247 20. 9	272 20. 5	305 24. 4	380 33. 8	
10 mg/kg/day	MEAN STAN, DEV	199 11. 8	223 13. 8	243 18. 2	257 16. 2	≜ 277 18.6	르 343르 34.6	
5 mg/kg/day	MEAN STAN, DEV	205 20. 0	228 16.4	249 12. 6	268 13. 2	294 17. 8	373 23. 8	
l mg/kg/day	MEAN Stan. Dev	205 18.8	226 19, 1	· 252 19. 7	272 19. 5	303 24, 6	379 31. 8	

 $\frac{a}{2}$ Significantly lower than the controls (Dunnett's t test p < 0.05)

ς.

:

Dose	No. of	VIAE	ы Ш	TUSES	DEAD	NOLTAGO2BA	IMPLANTATION	CORPORA	MEAN WT.
Group	Animals	Σ	ш	TOTHL	FETUSES	SILES	SITES	LUTEA	FETUS(6)
0 mg/kg/day	20	N ກໍ	জ ক	10.0	ର ପ	2	19. S	11. 2	4 M
i i		4. X	ಕ ನ	M N	ල ම	6 9	n N	N N	2. 4
10 mg/kg/day	17	ю М	m M		8 8	9.4	00 17	N O	4 t
i		00 Ci	va ∩i	4 4	9 5	9 0	m ₹	н М	M S
5 mg/kg/day	17	න හි	ഗ ഗ	10. S	00	0.7	11.2	11.1	4
i i		છ. સં	ତ ର	ର ର	ତ ତ	6 T	oi Ni	ର ରା	м В
1 mg/kg/day	19	4	∀ ທີ	10.1	0.1	9.4	10.6	10.9	4
, 1		1. 7 1	न २	ao Ni	ର ଭ	හ ග්	2.7	છ તં	5 0

ª Treatment groups were not significantly different from controls (Dunnett's t test p < 0.05)</pre>

Table 2

;;·

.....

Oral Teratology Study of FC-95 in Rats Mean Litter Data and Pup Weights with Standard Deviations

1247.0008

3MAC0356637

Table 3

1

 $\langle \gamma \rangle$

Oral Teratology Study of FC-95 in Rats Number of Fetuses with Gross Findings^a

Finding	0 mg/kg/day	10 mg/kg/day	5 mg/kg/day	l mg/kg/day
No. of fetuses examined	201	131	178	192 .
Umbilical hernia	l		1	
Runted		1		1
Total Normal Fetuses	200	130	177	191
Total Abnormal Fetuses	1	1	1	1

 $\frac{a}{chi-square p} \le 0.05$

Table 4

Oral Teratology Study of FC-95 in Rats Number and Percent of Fetuses with Skeleton Findings

		0		10		5		L
Skeleton Finding	mg/l	(g/day	ng/J	(g/day	mg/1	(g/day	mg/l	(g/day
Fontanelle not closed	10	(7)	10	(11)	7	(6)	5	(4)
Frontal nonossified	4	(3)	1	(1)			1	(1)
Parietal nonossified	2	(1)	1	(1)	1	(1)	1	(1)
Interparietal nonossified	3	(2)					1	(1)
Occipital nonossified	1	(1)	1	(1)				
Sternebrae nonossified	114	(81)	77	(85)	100	(81)	107	(81)
Sternebrae asymmetrical	53	(38)	23	(25)	36	(29)	39	(29)
Sternebrae bipartite	7	(5)	4	(4)	5	(4)	6	(5)
One sternebrae missing	30	(21)	13	(14)	26	(21)	26	(20)
Two sternebrae missing	10	(7)	2	(2)	4	(3)	6	(5)
13 ribs	5	(4)	2	(2)	2	(2)	6	(5)
13 ribs spurred	7	(5)	7	(8)	8	(7)	4	(3)
Wavy ribs	1	(1)	2	(2)		<u>.</u>	1	(1)
Protrusion on ribs	6	(4)	9	(10)	3	(2)	8	(6)
One body of the vertebrae	32	(23)	21	(23)	25	(20)	32	(24)
Two bodies of the vertebrae	18	(13)	7	(8)	11	(9)	9	(7)
bipartite								
Three bodies of the vertebrae bipartite	4	(3)	1	(1)	1	(1)	3	(4)
Four bodies of the vertebrae bipartite							1	(1)
Total No. Normal Fetuses	7	(5)	3	(3)	10	(8)	10	(8)
Total No. Abnormal Fetuses	133	(95)	88	(97)	113	(92)	123	(92)
Total No. of Fetuses Examined	1 3	140		91		123		133

A Treatment groups were not significantly different from the control (Chi-square P < 0.05)

() = percent of total examined

· · `

. .

. 2

Internal Finding	0 mg/kg/day	10 mg/kg/day	5 mg/kg/day	l mg/kg/day
Eye abnormality Thoracic cavity full	1 ^a (2)	$14^{b}(35)^{c}$ 1 (3)	4 ^b (7)	2 ^b (3)
of blood Enlarged atria Enlarged renal pelvis area in the kidney Abdominal cavity full of blood	1 (2) 3 (5) 4 (7)	 2 (5)	 5 (9)	3 (5) 2 (3)
Total No. Normal Fetuses	52 (85)	23 (57)	47 (85)	53 (90)
Total No. Abnormal Fetuses	9 (15)	17 (43)	8 (15)	6 (10)
Total No. of Petuses Examine	2đ 61	40	55	59

Oral Teratology Study of FC-95 in Rats Number and Percent of Fetuses with Internal Findings

Table 5

Eye abnormality was an artifact and was not considered for statistical evaluations

b Eye abnormalities were developmental lens abnormalities with secondary lens aberrations

 \leq Significantly higher than the control (Chi-square p < 0.05)

() = percent of total examined

.0

Appendix I

Oral Teratology Study of FC-95 in Rats Protocol

Objective

A teratology study will be used to evaluate the embryotoxic and teratogenic effects of orally administered FC-95 to pregnant rats during the period of organogenesis. The procedure complies with the general recommendations of the FDA issued in January, 1966 ("Guidelines for Reproduction Studies for Safety Evaluation of Drugs for Human Use"). The study will be conducted according to the 1978 Good Laboratory Practice regulations and Safety Evaluation Laboratory's Standard Operating Procedures.

Sponsor

3M Commercial Chemical Division, St. Paul, Minnesota.

Testing Facility

Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesota.

Study Director

E. G. Gortner

Start of Dosing

Mid July, 1980.

Test System

Eighty-eight sexually mature, time mated Sprague-Dawley derived female rats from Charles River Breeding Laboratory will be housed in hanging stainless steel cages with wire mesh floors and fronts in a temperature and humidity controlled room. This strain of rats will be used because of historical control data and time mated females are readily available. Purina Laboratory Chow and water will be available ad libitum. The lights will be on a 12 hour light/dark cycle.

Test System Identification

Each animal will be ear tagged and that number will be indicated on the outside of the cage.

Appendix I (Continued)

Randomization

 \odot

Service and the

The animals will be assigned cages according to a computer-generated random numbers table.

Control Article

Corn oil.

Test Article

FC-95.

Analytical Specifications

The test article, composition and purity will be determined by the Sponsor (3M Commercial Chemical group) prior to the start of the study and at the end of dosing.

Dosage Levels and Experiment Design

The test article will be suspended in corn oil daily. The test article suspension and control article will be administered by oral intubation to the rats on days 6 through 15 of gestation according to the following:

Dose Group	Dose Level	Group Size
Righ	10 mg/kg/day	. 22 Ş
Mid	5 mg/kg/day	22 ¥
Low	l mg/kg/day	22 Ş
Control	0 mg/kg/day	22 9

The oral route of administration will be used because of metabolism studies showed radiolabeled FC-95 was well absorbed. No dietary contaminants are known to interfere with the test article.

The animals will be observed daily from day 3 through day 20 of gestation for abnormal clinical signs. Body weights will be recorded on days 3, 5, 9, 12, 15 and 20 of pregnancy and the rats dosed accordingly using a constant dose volume of 5 ml/kg of body weight.

The females will be killed on day 20 and the ovaries, uterus and its contents will be examined to determine: number of corpora lutea, number of fetuses (live and dead), number of resorption sites, number of implantation sites, pup weight and gross abnormalities. Approximately one-third of the pups will be fixed in Bouin's solution for subsequent free-hand sectioning by the Wilson technique to determine any visceral abnormalities using a dissecting

Appendix I (Concluded)

microscope. The remaining approximately two-thirds of the pups will be fixed in ethyl alcohol for subsequent skeletal examination after clearing and staining with alizarin red.

Data Analysis and Final Report

÷

The proposed statistical methods to be used for analysis of the data are: Dunnett's t test for dam and pup weights, number of fetuses, number of resorption sites, number of implantation sites and number of corpora lutea; Chi square for percent abnormalities. The proposed date for the final report is 2-3 months after detailed pup examinations have been completed (approximately fourth quarter, 1980).

Appendix II

Oral Teratology Study of FC-95 in Rats List of Principal Participating Personnel

NAME

0

÷

1.00

÷..

FUNCTION

Study Director Edwin G. Gortner Veterinary Pathologist Elden G. Lamprecht Coordinator-Histology Cathy E. Ludemann Supervisor-Animal Care Gary C. Pecore Technician Loren O. Wiseth

Appendix III

STATEMENT OF QUALITY ASSURANCE

STUDY NUMBER: 0680TR0008

TITLE: Oral Teratology Study of FC-95 in Rats

Audits and/or inspections were performed by the Riker Quality Assurance Unit for the above titled study, and reported to the study director and to management as follows:

Date Performed

Date Reported

18 July 1980 28 July 1980 15 December 1980 17 December 1980 21 July 1980 28 July 1980 17 December 1980 17 December 1980

millen TIMOR

A. E. Orterstrom Laboratory Quality Assurance Riker Laboratories, Inc.

December 17, 1980 _____

APPENDIX IV

Test and/or Control Article Characterization

for FC - 95, Lot 640

- 1. The identity strength, uniformity, composition, purity or other pertiment characterizations of the test and/or control substances have been determined and documented as of $\underline{MA_y}$ K, 1960.
- The method of synthesis or origin of the test and control substances, including their amount and the method of bioassay (if applicable) is documented.
 yes
 no
- 3. The stability of the test and/or control substances have been determined or will be determined as of <u>Completion of Tex Testing</u> If Mecasiary

The above information and documentation are located in the sponsor's records.

D-Olicken <u>5/21</u>/80

Form 19793 PWO

H (1997) - 1 (1997) - 1

19 **1**9

 \bigcirc

3MAC0356646

16

Ś

Appendix V

Oral Teratology Study of FC-95 in Rats Individual Body Weights (g)

_

Dose Group			Stud	y Day			
and Rat No.	3	6	9	12	15	20	

0 MGZKGZDAY

son a radio de la constante de

£

. 4

NØR	12896	186	212	235	254	287	357
NØR	12997	224	261	239	306	345	424
NØF.	12998	216	238	240	277	315	397
NØR	12999	i 21 2	232	271	274	302	373
NØR	13000	224	256	245	307	335	435
NØR	13016	182	207	284	255	284	342
NØR	13018	175	201	259	246	277	354
NOR	13019	193	219	237	277	309	378
NØR	13020	194	221	236	277	319	400
NØR	13036	205	228	222	284	322	408
NØŔ	13040	186	208	233,	261	293	381
NØR	13041	195	219	- 285	258	289	355
NØR	13043	220	239	253	295	340	426
NØR	13044	267	228	284	273	296	359
NØR	13060	230	248	235	316	349	442
NØR	13061	195	212	213	259	297	366
NOR	13062	210	229	222	272	302	362
NØR	13063	185	208	247	257	289	342
NØR	13064	188	211	250	256	289	368
NØR	13080	179	194	258	238	256	321
M .	EAN	200	223	247	272	305	380
STAN	i. DEV	16.7	17.6	20.9	20.5	24.4	33.8

NON PREGNANT ANIMALS

NOR	13017	186	198	243	217	234	253
NØR	13042	188	209	260	247	255	272

:

• •

Appendix V (Continued)

Oral Teratology Study of FC-95 in Rats Individual Body Weights (g)

Dose	Gro	oup			Study	/ Day			<u></u>
and	Rat	No.	3	6	9	12	15	20	

10 MG/KG/DAY

i. e.c

. - .

2

DØR	13001	189	222	239	253	281	347	
OØR	13002	190	217	230	256	283	. 356	
DER	13003	192	222	224	265	290	381	
UØR	13004	193	212	218	233	255	319	
OØR	13005	201	225	260	261	285	369	
OØR	13021	227	257	247	278	293	360	
CODE	13022	212	244	243	288	311	402	
ÚØR.	13823	180	206	258	227	245	285	
OØR	13025	208	237	251	268	297	382	
OBR:	13837	187	214	229	250	274	357	
OØR	13045	195	216	228	259	289	361	
DØR	13048	186	205	226	236	248	311	
UØR:	13065	284	223	274	263	279	304	
DØR	13066	207	226	275	263	262	358	
CIME:	13962	21.0	234	222	268	278	322	
DBR	13069	203	228	262	262	283	338	
OBR	13081	194	209	238	237	251	281	
		·						
t	1EAN	199	223	243	257	277	343	
STAN	I. DEV	11. 8	13.8	18.2	16.2	18.6	34. 6	

NON PREGNENT ANIMALS

00R	13024	195	217	233	230	242	252
OØR'	13046	187	209	242	228	232	231
00R	13047	184	201	244	221	233	235
OØR.	13049	213	237	243	250	251	266
OØR	13068	216	232	236	239	250	261

1247.0019

Appendix V (Continued)

Oral Teratology Study of PC-95 in Rats Individual Body Weights (g)

Dose Group			Study	Day			_
and Rat No.	3	6	9	12	15	20	

5 MGZKGZDAY

ω.

1

1

, **(**) -

13666	192	218	233	258	272	340	
13062	226	249	272	264	304	388	
13608	197	225	262	262	288	394	
13069	188	212	274	254	283	361	
12010	194	226	245	263	282	343	
13027	212	232	251	269	288	369	
12028	215	235	228	274	294	383	
13029	199	229	241	272	288	366	
13030	176	210	260	276	294	379	
13038	198	219	225	263	288	366	
12050	198	204	239	246	265	333	•
13051	222	243	256	283	323	407	
12053	235	248	242	291	325	468	
13654	197	224	238	259	279	349	
13070	254	266	245	297	327	410	
13071	289	223	250	274	304	378	
12072	188	211	260	256	292	363	
1EGN	265	228	249	268	294	373	
A DEV	20. 0	16.4	12.6	13. 2	17. 8	23 8	
	13005 13008 13009 13010 13027 13028 13028 13029 13030 13050 13050 13050 13050 13050 13050 13050 13050 13050 13072 13072	13005 192 13005 225 13005 188 13010 194 13028 212 13028 215 13028 215 13028 199 13036 176 13056 188 13056 188 13056 188 13054 197 13054 197 13054 197 13054 197 13054 197 13054 197 13054 197 13054 197 13054 197 13054 197 13072 188 MEAN 200 * DEV 20.0	13005 192 218 13007 225 249 13008 197 225 13009 188 212 13010 194 226 13027 212 232 13028 215 235 13029 199 229 13036 176 210 13038 196 219 13050 188 204 13051 222 243 13053 235 248 13054 197 224 13070 254 266 13071 206 223 13072 188 211 MEAN 205 228 4 2072 188 211	13005 192 218 233 13007 225 249 272 13008 197 225 262 13009 188 212 274 13010 194 220 245 13020 194 220 245 13027 212 232 251 13028 215 235 228 13029 199 229 241 13030 176 210 260 13050 188 219 235 13050 188 219 235 13050 188 204 239 13051 222 243 256 13053 235 248 242 13054 197 224 238 13070 254 266 245 13071 260 223 250 13072 188 211 260 4 265 228 249 4 0672 168 211 260<	13005 192 218 233 258 13007 226 249 272 264 13008 197 225 262 262 13009 188 212 274 254 13010 194 226 245 263 13027 212 232 251 269 13028 215 235 228 274 13028 215 235 228 274 13028 215 235 228 274 13029 199 229 241 272 13039 176 210 260 276 13038 198 219 235 263 13050 188 204 239 246 13051 222 243 256 283 13053 235 248 242 291 13054 197 224 238 259 13072 188 211 260 256 4 13072 188 </td <td>13006 192 218 233 258 272 130067 226 249 272 264 304 13008 197 225 262 262 288 13009 188 212 274 254 283 13009 188 212 274 254 283 13010 194 226 245 263 282 13027 212 232 251 269 288 13028 215 235 228 274 294 13029 199 229 241 272 288 13036 176 210 260 276 294 13038 198 219 235 263 288 13056 188 204 239 246 265 13051 222 243 256 283 323 13053 235 248 242 291 325 13054 197 224 238 259 279</td> <td>13005 192 218 233 258 272 340 130067 226 249 272 264 304 388 13008 197 225 262 262 288 394 13009 188 212 274 254 293 361 13010 194 226 245 263 282 343 13027 212 232 251 269 288 369 13028 215 235 228 274 294 383 13029 199 229 241 272 288 366 13039 176 210 260 276 294 379 13038 198 219 235 263 288 366 13059 188 204 239 246 265 333 13051 222 243 256 283 323 407 13053 235 248 242 291 325 408 13054</td>	13006 192 218 233 258 272 130067 226 249 272 264 304 13008 197 225 262 262 288 13009 188 212 274 254 283 13009 188 212 274 254 283 13010 194 226 245 263 282 13027 212 232 251 269 288 13028 215 235 228 274 294 13029 199 229 241 272 288 13036 176 210 260 276 294 13038 198 219 235 263 288 13056 188 204 239 246 265 13051 222 243 256 283 323 13053 235 248 242 291 325 13054 197 224 238 259 279	13005 192 218 233 258 272 340 130067 226 249 272 264 304 388 13008 197 225 262 262 288 394 13009 188 212 274 254 293 361 13010 194 226 245 263 282 343 13027 212 232 251 269 288 369 13028 215 235 228 274 294 383 13029 199 229 241 272 288 366 13039 176 210 260 276 294 379 13038 198 219 235 263 288 366 13059 188 204 239 246 265 333 13051 222 243 256 283 323 407 13053 235 248 242 291 325 408 13054

NON PREGNANT ANIMALS

РИК	12626	217	235	294	252	252	261
POH:	13052	218	237	252	248	254	262
FØR	13072	206	231	250	258	244	259
FØR:	13074	207	234	244	257	272	287.
PØR	13082	195	214	240	225	232	240

Appendix V (Concluded)

Oral Teratology Study of FC-95 in Rats Individual Body Weights (g)

Dose Group			Study	Day			
and Rat No.	3	6	9	12	15	20	

1 MGZKGZĎBN

QOE:	18011	198	224	250	261	288	367	
GRAF!	12012	217	235	248	282	310	286	
00H	12613	183	204	230	267	300	379	
0.90E	12014	193	221	224	272	201	376	
00k	11015	200	228	253	284	326	413	
MAR	12021	234	258	241	্রারার	332	411	
00hF	12832	195	220	246	255	276	322	
LUME:	13633	204	230	244	289	320	407	
n nater	1 3/1 4	193	226	254	262	286	255	
LUN HE	1263	185	201	236	251	271	252	
CONTRACTOR -	13639	224	252	302	301	334	416	
LUM-	4 3.955	201	226	232	261	303	379	
itanite: Itanite:	12656	264	223	259	263	296	371	
CHĀL	17057	196	211	236	250	268	333	
COR.	ACGEC.	204	204		22M	201	375	
	12005	405	204	204	257	291	362	
COR. COMO	42072	4 6 6	245	2023	201	296	363	
COLOR -	ADOTE ADOTE		240	200	202	297	774	
0.95 0.00	130/8-	200	220 774	జాల నాల	204 502	769	259	
QUF.	13085	701	213	210	222	200		
	·				077	2022	779	
	ie Hini	200	225	202	.			
STHE	I L'EV	18.8	19.1	19.7	19. 5	24 E	77 E	

NON PREGNANT ANIMALS

ØØR	13058	182	205	247	226	238	253
00k	13876	192	213	236	254	278	270
QØF:	13079	196	218	228	244	255	266

Appendix VI

•

•

Oral Teratology Study of FC-95 in Rats Individual Litter Data with Pup Weights

Dose Group	VIRE	BLE F	ETUSES	DEAD	RESOR	IMPLAN	CORPRA	MEHN	FETUS	พาเฉ
and Rat No.	M	F	TOTAL	FETUSES	PTION SITES	TATION SITES	LUTEA	AVG	11	F
0 mg/kg/day										
NØR 12996	5	4	9	ø	1	10	9	4. 🦻	5.1	4. 7
NOR 12997	4	9	13	Ø	1	14	16	3.6	3, 8	3.5
NØR 12998	7	4	11	Ø	Ø	11	12	4.3	4.3	4. 2
NØR 12999	7	4	11	0	2	13	13	4. 6	4.1	3.9
NØR 13000	7	7	14	0	0	14	17	4.1	4.2	4. Ö
NØR 13016	4	5	9	Ø	1	10	9	3.7	3.3	4.0
NOR 13017	NOT	PREG	NEINA							
NGR 13018	7	3	10	0	1	11	11	4.5	4, 5	4.3
NOR 13019	6	1	7	ø	0	7	6	5.1	5. 1	4. 9
NØR 13020	4	8	12	Ø	6	12	12	4. 7	4, 8	4. 7
NOR 13036	5	5	10	0	1	11	8	4.1	4. 3	3.9
NGR 13040	6	7	13	0	Ø	13	12	4.4	4. 5	4, 2
NØR 13041	6	3	9	6	1	10	12	4. 2	4.3	4.1
NØR 13042	NOT	PREG	VANT							
NØR 13043	4	6	18	0	3	13	15	4.2	4.4	4.1
NØR 13044	5	2	7	Ø	Ø	7	11	3.9	3.8	3.9
NØR 13060	8	5	13	0	1	14	12	4.1	4.1	3.9
NØR 13061	4	6	10	0	2	12	11	4. 2	4.3	4.1
NOR 13062	3	4	7	0	0	7	9	4.1	4.4	3.8
NØR 13063	1	5	6	0	0	6	9	4.3	4. 2	4. 3
NØR 13064	5	7	12	0	0	12	12	4, 2	4. 2	4.2
NØR 13080	6	2	8	0	1	9	9	4.4	4.4	4.2
MERN	5. 2	4. 9	10. 0	0.0	0.7	10.8	11. 2	4, 3		
CTON DEV	4 7	2.1	2 2		0 9	25	2.7	0.4		

.

3MAC0356551

Appendix VI (Continued)

.

1. 1. 2

.

C) -

e de la compañía de l

5 - 1

Oral Teratology Study of FC-95 in Rats Individual Litter Data with Pup Weights

Dose Group	VIAB	LE FETI	JSES	DEAD	RESOR	IMPLAN	CORPRA	MEAN F	 ยามร	เป็นร่ว
and Rat No.	M	FTO	DTAL	FETUSES	PTION SITES	TATION SITES	LUTEA	AVG	11	<u>۴</u>
10 mg/kg/da	<u>Y</u>	•								
00R 13001	4	6	10	0	1	11	10	4 . 5	4, 6	4, 5
00R 13002	3	6	9	9	2	11	11	3. 9	4 1	2.9
00R 13603	4	7	11	U	0	11	12	4. 2	4.4	4 1
00R 13004	7	2 1	9	0	0	9	9	4. 2	4. 2	4.0
JOR 13085	5	7	12	Ø	0	12	12	4.3	4. 3	4, 2
00R 13021	1	3	4	0	0	4	7	4.4	ৰ. 4	4.4
DØR 13022	11	2	13	0	Ű,	13	14	4. 2	4. 2	3.8
DOR 13823	2	Ø	2	0	6	2	5	4, 8	4, 8	6.0
00R 13824	NOT	PREGNE	AND -				•			
00R 13025	6	6	12	0	0	12	12	4,4	4. U	4.4
DØR 13037	5	5	10	0	Ø	10	12	4. 3	4.4	4. 2
DOR 13045	4	6	10	0	1	11	11	4, 5	4. 6	4.4
DØR 13046	NO1	PREGNE	- Trike							
DGR 13047	NOT	PREGNE	HT-1							
00R 13048	5	3	8	0	1	9	8	4, 2	4. 3	3.9
00R 13049	NO3	PREGNE	111							
DØR 13065	0	1	1	0	0	. 1	6	4.3	0.0	4. 3
DOR 13066	4	8	12	0	Ø	12	11	4.0	4. 2	3.9
00R 13067	1	1	2	6	1	м	8	4.6	4, 8	4, 5
00R 13068	NOT	PREGNE	INT							
DØR 13069	2	3	5	ß	1	6	6	3.5	3.3	3.7
DOR 13081	0	1	1	0	0	1	З	4. 1	6. 0	4.1
MEAN	3, 8	3. 9	7. 7	0. 0	0.4	8.1	9, 2	4. 3		
STAN. DEV	/. 2.8	2. 6	4.3	0.0	0, 6	5 4.3	3.1	0.3		

v

,

Appendix VI (Continued)

and the second second

Gi

Oral Teratology Study of FC-95 in Rats Individual Litter Data with Pup Weights

Dose Group	V1Ĥ	BLE F	FETUSES	DEAD	RESOR	IMPLAN	CORPRA	MEHN	FETUS	MISC.
and Rat No.	M	F	TOTAL	FETUSES	PTION	SITES	LUTER	HVG	[9]	+
5 mg/kg/day										
POR 13006	3	3	6	0	3	9.	9	4. 6	4. ප	4. 4
FUH: 1300/	و	3	12	Ø	ø	12	12	4.3	4.4	4.0
POR 13008	5	7	12	Ø	0	12	12	3, 9	4.6	3.8
POR 12009	· 5	4	9	0	0	9	8	3, 8	4.1	3.5
PBR 13010	4	7	11	0	ø	11	12	3.9	4. 6	3.8
FOR 13026	NOT	FREG	NHNT							
FOR 13027	8	3	21	Ø	2	13	10	4. 0	4:1	3.8
POR 13028	4	8	12	0	6	12	13	4.3	4.4	4. 3
POR 13029	4	3	. 7	Ø	0	7	10	4, 8	5. 2	4.3
POR 13030	4	é	13	Ø	1	14	14	4.5	4. 5	4.5
POR 13038	5	5	10	ø	Ø	10	10	4.4	4. 7	4. 2
PER 13050	4	5	9	0	1	10	9	4.0	4. 2	3.9
POR 13851	4	. 7	11	6	2	13	12	4. 3	4.4	4. 2
POR 13052	NUT	PREG	NHNT							
POR 13053	9	5	14	0	0	14	14	3.6	3.7	3, 5
POR 13054	4	6	10	Ø	Ű	10	11	4. 2	4.3	4.1
POR 13070	5	8	13	0	2	15	14	4, 2	4. 2	4. 2
FOR 13071	ż.	6	9	0	1	10	9	4.4	4.7	4.3
PØK 13072	5	4	9	0	Ø	9	9	4. ≧	4.4	4.2
POR 13073	NOT	PREG	NHNT							
POR 13074	NOT	PREG	NANT							
POR 13082	NOT	PREG	NANT							
MEAN	5. 0	5. 5	10, 5	6. 6	0.7	11. 2	11.1	4, 2		
STAN, DEV.	1.9	2.0	2.2	0.0	1.0	2.2	2.0	0.3		

;

. -

3MAC0356553

. .

Appendix VI (Concluded)

.

Oral Teratology Study of FC-95 in Rats Individual Litter Data with Pup Weights

Dose Group and Rat No.	V1AE M	E FE F	TUSES	DEAD FETUSES	RESOR PTION SITES	IMPLAN NATION SITES	CORPRH LUTEA	MEAN AVG	PETUS M	MAKGA F
l mg/kg/day							•			
00P 13011	2	3	10	0	8	10	8	4.4	4. 5	4.4
00R 13012	5	6	11	ø	6	1 1	12	4.1	4.1	4, 6
00R 13613	3	6	9	Ø	0	9	11	4.4	વ. વ	4
QUR 13014	5	7	12	Ø	0	12	13	3.4	3.8	2.2
QOR 13015	4	6	10	Ю	0	10	9	3.8	2.8	3.8
QGR 13031	7	6	13	6	0	13	14	4. 0	3.9	4.1
QUR 13032	1	1	2	Û	Û	2	4	3.8	4. 3	3.3
008 13033 -	4	9	13	Ø	Ø	13	14	4. 5	4, 6	4. 5
NOR 13034	2	4	6	0	3	9	8	5.0	5.1	4. 9
00K 13035	5	5	10	Ü	1	11	11	4.6	4.7	4.4
QOR 13039	6	6	12	Ø	Ø	12	12	4.3	4.4	4, 2
Q0K 13055	7	4	11	Ø	1	12	12	4.3	4, 2	4. 🖾
QOR 13056	5	6	11	1	1	13	11	4.1	4.3	4.0
QCK 13057	4	5	9	Ū	1	10	12	3. 9	3.8	3.9
00R 13058	NOT	PREG	NĤNT							
QOR 13059	6	4	10	0	0	10	11	4.1	4. 3	3, 8
QOR 13075	6	4	10	0	Ø	10	11	4, 2	4, 2	4.1
00K 13076	NOT	PREG	VHN (* 1							
QOF: 13077	3	5	8	0	1	<u>o</u>	9	4.4	4.4	4.4
QGR 13078	5	5	10	0	0	10	10	4, 6	4. 9	4.4
QOR 13079	NOT	PREG	NANT							
QGR 13083	4	11	15	0	9	15	15	4. 1	4. 2	4.0
MEAN	4.7	5.4	10. 1	0.1	0.4	10.E	10. 9	4. 2		
STAN. DEV.	1.7	2. 1	2, 8	0.2	0.8	2.7	2, 6	Ø. 4		

1247.0025

:

,

DISTRIBUTION LIST

0

٢.,

K. L. Ebbens + J. D. Henderson + G. R. Steffen + M. T. Case

E. G. Gortner (original +1)

F. Keller (QA file)

E. G. Lamprecht

McCormick (2)>

R. A. Nelson + E. L. Mutsch + R. E. Ober

1247.0026

- cc: M. T. Case E. G. Gortner (original + 1) F. Keller (QA File) E. G. Lamprecht
- E. L. Hutsch + R. A. Nelson + R. E. Ober W-CC-McCornick + F. D. Griffith (2) H. Pearlson η. G. R. Steffen + J. D. Henderson \rightarrow K. L. Ebbens

Amendment to the Final Report of the Oral Teratology Study of FC-95 in Rats

> Experiment No.: 0680TR0008 Issued: 12/18/80

Please add the amended summary, the amended table 5, and the amendment to the results and discussion sections to the above report. The study conclusions were changed by this amendment to the report.

E. G. Gortner

.82

E. G. Lamprecht, DVM, PhD Date Research Veterinary Pathologist

PhD м. Case. DVM, T. Manager, Pathology-Toxicology Safety Evaluation Laboratory

Senior Research Technologist Animal Teratology Reproduction 25 -

Amended Summary (p. 1) to the Oral Teratology Study of FC-95 in Rats Experiment No. 0680TR0008

Oral administration of FC-95 at doses of 10, 5 and 1 mg/kg/day to pregnant Sprague-Dawley rats during days 6 through 15 of gestation (period of organogenesis) was not teratogenic.

And the second second second

FC-95 administration was maternally toxic only to the 10 mg/kg/day group. At gestation days 12 through 20 the maternal body weights of the high dose females were significantly lower than the controls. FC-95 was not maternally toxic to the 5 and 1 mg/kg/day groups.

FC-95 was not embryotoxic and did not affect the ovaries or reproductive tract contents of the dams. The compound did not produce an increase in the number or proportion of fetal skeleton variations. Amendment to the Results and Discussion Sections (p. 3-5) of the Oral Teratology Study of FC-95 in Rats

Experiment No. 0680TR0008

(This amendment addresses the last two paragraphs of the results section and the entire discussion section.)

FC-95 was labeled a teratogen of the lens because apparent lens abnormalities were observed at the 10, 5 and 1 mg/kg/day dose levels. Based on subsequent studies, particularly Riker Experiment No. 0681TR0362, the interpretations of these observations have been extensively modified. The lens findings observed under the dissecting microscope are now known to be either freehand sectioning artifacts or a normal area of lens cell degeneration. The fetal rat lens findings were incorrectly interpreted as a teratogenic change in this study.

The gross finding of a lens cleft was an artifact created by freehand sectioning. It represents a separation between the embryonal nucleus lens cells and the lens epithelium. The gross finding of a lens dark streak was a normal observation of the embryonal nucleus. The embryonal nucleus is an area of normal lens cell degeneration in the gestation day 20 fetus.

The gross appearance of the rat lens at day 20 of gestation is determined by the region of the lens which is transected by freehand sectioning. In a subsequent study (Riker Experiment No. 0681TR0362) the compound-related occurence of the lens findings could not be repeated when the fetuses were coded before freehand sectioning and gross evaluation. The range of gross lens observations and the differences among the dose group incidences were due to the manner and frequency in which the lens cleft artifact was created by freehand sectioning and the limitations inherent in visualizing the embryonal nucleus.

In summary, FC-95 in utero exposed fetuses did not have compound-related changes in their lenses.

Amended Table 5 (p. 10)

Oral Teratology Study of FC-95 in Rats Number and Percent of Fetuses with Internal Findings

Internal Finding	0	10	5	1
	mg/kg/day	mg/kg/day	mg/kg/day	mg/kg/day
Lens findingsa Thoracic cavity full	1 (2)	14 (35 <u>)b</u> 1 (3)	4 (7) 	2 (3)
of blood	1 (2)			
Enlarged atria	3 (5)			3 (5)
Enlarged renal pelvis	4 (7)		5 (9)	2 (3)
of blood	61	40	55	59

The lens findings observed under the dissecting microscope were either freehand sectioning artifacts or a normal area of lens cell degeneration Significantly higher than the control (chi-square with Yates correction p < 0.05)</p>

() = percent of total examined

The second s

28

3MAC0356669

DISTRIBUTION LIST

K. L. Ebbens

I among the second second

E. G. Gortner (original + 1)

F. D. Griffith + F. A. Ubel

F. Keller (QA File)

E. G. Lamprecht

R. E. Ober + R. A. Nelson + E. L. Mutsch

W. H. Pearlson

G. R. Steffen \rightarrow J. D. Henderson \rightarrow M. T. Case

W. C. McCormick

• •

Amended Appendix VII

STATEMENT OF QUALITY ASSURANCE

STUDY NUMBER: Amendment to 0680TR0008

£

TITLE: Amendment to the Final Report of the Oral Teratology Study of FC-95 in Rats

Audits and/or inspections were performed by the Riker Compliance Audit unit for the above titled study, and reported to the study director and to management as follows:

Date	Performed	Date	Rep	orted
-				-
July	16 and 19, 1982	July	21,	1982
July	22, 1982	July	23,	1982

Compliance Audit Riker Laboratories, Inc.

23.1982 Date

1247.0032

DISTRIBUTION LIST

K. L. Ebbens + J. D. Henderson + G. R. Steffen + M. T. Case

E. G. Gortner (original +1)

P. Keller (QA file)

E. G. Lamprecht

Commercial P

R. A. Nelson \rightarrow E. L. Mutsch \rightarrow R. E. Ober

Oral Teratology Study of FM-3422 in Rats

Experiment No .:

Conducted At:

Inclusive Dosing Period:

Study Director:

í

² S S 4

1-22-81 Date

E. G. Gortner Senior Research Technologist Animal Reproduction-Teratology Study Director

7-2253

0680TR0010

Safety Evaluation Laboratory Riker Laboratories, Inc. St. Paul, Minnesota

August 19 to September 4, 1980

E. G. Gortner

Elden & Lamprecht 1-22-81

E. G. Lamprecht, DVM, PhD Date Research Veterinary Pathologist

423/11

M. T. Case, DVM, PhD Manager, Pathology-Toxicology Safety Evaluation Laboratory

.

3MA00011419

1.

Summary

Oral administration of FM-3422 at 75, 37.5 and 25 mg/kg/day to prequant Sprague-Dawley rats during days 6 through 15 of gestation (period of organogenesis) was teratogenic to rat fetuses. Teratogenic changes included a developmental eye abnormality, cleft palate, blood in the kidney parenchyma and sternebrae malformations. The developmental eye abnormality appeared to be an arrest in development of the primary lens fibers forming the embryonal lens nucleus followed by secondary aberrations of the secondary lens fibers of the fetal nucleus. The proportions of fetuses with the lens changes were significantly higher in all FM-3422 groups than in the control group. Cleft palates were produced in the 75 and 37.5 mg/kg/day groups. All three groups receiving compound had fetuses with blood in the kidney parenchyma. The sternebrae changes, although normally considered skeleton aberrations, were viewed as compound-related malformations because of their severity. FM-3422 also produced an increase in other fetal skeleton aberrations.

FM-3422 was not embryotoxic and did not affect the ovaries or reproductive tract contents of the dams.

FM-3422 was maternally toxic to the 75 and 37.5 mg/kg/day dose animals in reducing their group mean body weight gain during the dosing interval. Toxic clinical signs and deaths occurred in only the 75 mg/kg/day dose group.
Introduction

This teratology study $\frac{a}{2}$ in rats was conducted to evaluate the embryotoxic and teratogenic effects of orally administered FM-3422. The study was sponsored by 3M Commercial Chemical Division, St. Paul, Minnesota and was conducted by the Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesota. Two sets of compound administration groups were dosed between August 19 and September 4, 1980. The protocol and list of the principal participants and supervisory personnel can be found in Appendices I and II respectively.

All portions of this study were conducted according to the Good Laboratory Practice (GLP) regulations and the Safety Evaluation Laboratory Standard Operating Procedures (see Appendix III for Quality Assurance Unit statment). The storage location for specimens, raw data and a copy of the final report is maintained in the Safety Evaluation Laboratory's record archives.

Methods

Time mated Sprague Dawley derived rats were obtained from Charles River-Breeding Laboratory and assigned cages according to a computer-generated random numbers table. The rats were then divided into four groups of 22 animals weighing 140 to 240 grams. The rats were housed individually in hanging stainless steel cages with wire mesh floors and fronts in a temperature and humidity controlled room. Food- and water were available ad libitum. The lights were on a 12 hour light/dark cycle.

The animals were observed daily from day 3 through day 20 of gestation for abnormal clinical signs. Body weights were recorded on days 3, 6, 9, 12, 15 and 20 of gestation and the rats dosed accordingly using a constant dose volume of 5 ml/kg of body weight. The four groups were dosed with FM-3422 (Lot 784) suspended daily in corn oil at 0, 75, 37.5 or 25 mg/kg/day. FM-3422 was administered daily by oral intubation with a syringe equipped with a ball-tipped intubation needle to the rats on days 6 through 15 gestation (day 0 indicated by sperm-positive vaginal smear). FM-3422 analytical characterization (see Appendix IV) was provided by 3M Commercial Chemical Division, St. Paul, Minnesota.

All surviving animals were sacrificed on day 20 by cervical dislocation and the ovaries and uterus, including its contents, were examined immediately to determine the following: number of corpora lutea, number of viable fetuses, number of resorption sites, pup weights and sex, and any gross fetal abnormalities. Approximately one-third of the fetuses were fixed in Bouin's solution for subsequent free-hand sectioning by the Wilson technique to determine visceral abnormalities. The remaining fetuses were preserved in alcohol for clearing and staining of the skeleton with alizarin red to detect skeletal abnormalities. Selected free-hand sections were processed for histological evaluation.

 $\frac{a}{b}$ Riker Experiment No. 0680TR0010 — Purina Laboratory Chow, Ralston Purina Company, St. Louis, MO

з.

Results and Discussion

FM-3422 was maternally toxic to the high and mid dose groups (75 and 37.5 mg/kg/day) in reducing their group mean body weight gain during the dosing interval. All groups had lower mean weight gain than the controls at all weighings during the dosing interval of days 6 through 15 of gestation (Table 1). In the case of the high dose group at gestation days 9, 12 and 15 and in the case of the mid dose group at gestation days 9 and 15, the group mean weight gains were significantly lower than the mean weight gains of the control group (0 mg/kg/day). The lower mean weight gains of the high and mid dose groups during the dosing interval were responsible for their significantly lower mean body weights between the end of dosing and the termination of the study (Appendix V). The mean body weights and mean weight gains of the low dose group (25 mg/kg/day) were not significantly different from the control.

Abnormal clinical signs were observed and deaths occurred only in the high dose group. Three rats in the high dose group died. One rat died without clinical signs. Two of the rats that died plus one surviving rat had abnormal compound-related clinical signs which included some of the following: thin, lethargic, ataxic, blood in stool, urinary incontinance and bloody nares. The onset of abnormal clinical signs was on day 11 but the signs disappeared in the surviving rat by day 19 of gestation. The remaining 18 high dose rats and the mid and low dose rats did not have abnormal compound-related clinical signs.

The compound was not embryotoxic and did not affect the ovaries or reproductive tract contents of the dams. The mean number of male, female, total and dead fetuses, the mean number of resorption sites, implantation sites and corpora lutea of the three FM-3422 dose groups were not significantly different from the control (Table 2, Appendix VI).

FM-3422 was not fetal toxic. However, the combination of reduced maternal body weight gain (Table 1) plus higher numbers of fetuses in the treatment groups than the control group (Table 2 Appendix VI) resulted in mean fetus weights of all FM-3422 groups which were significantly lower than the control mean fetus weight. The reduced mean fetus weights were not associated with an increase in runting or other gross fetus findings (Table 3).

FM-3422 administration resulted in malformations in fetal sternebrae. The changes, although normally considered skeleton aberrations, were interpreted as compound-related malformations because of their severity. The severity and often the incidence of sternebrae malformations were greater in the three treatment groups than the control group. These malformations included the following: sternebrae asymmetrical, sternebrae bipartite, sternebrae scrambled, sternebrae enlarged, sternebrae missing and sternebrae misshapen (Table 4). All three FM-3422 dose groups had significantly higher proportions of fetuses with sternebrae asymmetrical than the control group. In addition, the high dose group had a

significantly higher proportion of fetuses with bipartite sternebrae than the control group.

An increase in other skeleton aberrations also occurred as the result of FM-3422 administration. These skeleton aberrations included nonossification changes of the cranial bones and sternebrae plus other sternebrae and rib changes (Table 4). The high dose group had significantly higher proportions of fetuses with all of these skeleton changes than the control group. The mid and low dose groups had significantly higher proportions of fetuses with some of these changes than the control group; notably nonossification of the cranial bones, sternebrae missing and 13 ribs spurred. The skeleton aberrations found are generally considered minor but they are of appreciable significance in this study with FM-3422 because of the high proportion of fetuses with the abnormalities.

The control group had a higher proportion of fetuses with one or two bodies of the vertebrae bipartite than the three treatment groups (Table 4). This difference was significant in all instances except for the finding of one body of the vertebrae bipartite in the low dose group.

FM-3422 administration produced the teratogenic effect of cleft palate in the high and mid dose groups and blood in the kidney parenchyma in all three dose groups. The proportions of fetuses with cleft palate and blood in the kidney parenchyma were sigificantly higher in the high dose group than in the control group (Table 5). No cleft palates were present in control and low dose fetuses examined.

FM-3422 was teratogenic to the eye of the rat at all dose levels administered in this study. The teratogenic effect was a developmental eye abnormality which appeared to be an arrest in development of the primary lens fibers forming the embryonal lens nucleus, followed by secondary aberrations of the secondary lens fibers of the fetal nucleus. All eye abnormalities were localized to the area of the embryonal lens nucleus although a variety of morphological appearances were present within that location. The range of morphological appearances as observed under the dissecting microscope varied from a slight discoloration running through the lens to a discoloration of part of the lens and the presence of a cleft beneath the lens epithelium (Table 5). Histologically the discolorations were due to the presence of lens vesicle remnants forming clefts or surrounding the lens nucleus. Also contributing to the discolorations were primary lens fibers which appeared to have not elongated and the possible presence of degenerated epitrichial cells. Secondary lens fiber development progressed normally except immediately surrounding the abnormal embryonal nucleus. Prominant secondary aberrations of secondary lens fibers include V-shaped clefts between the embryonal nucleus and lens epithelium and lens vesicle remnants surrounding the nucleus.

The proportion of fetuses with the lens abnormality in one or both lenses was significantly higher in all groups than in the control group (Table 5).

5.

No lens abnormalities occurred in the control group. A no-effect dose level for the teratogenic abnormality was not established in this study.

Further Discussion on Lens Embryology

Lens structural and functional requirements are met during embryonic development by the differentiation of highly specialized populations of cells from undifferentiated procursers and by the coordinated morphogenesis of the resulting tissues. Both processes are controlled to a remarkable extent by interactions which occur among emerging tissues. Each tissue of the eye is brought to its final state of differentiation, its cell population, size and its definitive geometry, not only by intrinsic processes, but also by extrinsic influences exerted by neighboring tissues.

The embryonal origin of the lens is undifferentiated ectoderm. The tip of the optic vesicle, presumably the neural retina, plays the final role in inducing lens from overlying ectoderm and in aligning the lens precisely with the rest of the eye. Additional action of tissues derived from endoderm (foregut) and mesoderm (heart) on the same target tissue decreases the probability that lens formation would be aborted by accidents during the early phases of induction. While the nature of the inductive influence remains unknown, there are indications that substances may be transferred from the presumptive neural retina to the overlying ectoderm during induction. A prolonged period of inductive interaction not only increases the probability that lens induction will occur successfully in the face of interference, but provides a mechanism for continuously adjusting the size, shape, position and orientation of the lens to that of the retina².

During the early stages of the inductive process, the ectodermal cells immediately overlying the tip of the optic vesicle elongate perpendicularly to the body surface to form a thickened disc (lens placode). The change in cell shape is accomplished without change in cell volume. The number of cells, however, continues to increase during this period. Toward the end of lens placode formation, acidophilic fibrils appear in the apices of the lens placode cells. At about this time, the placode invacinates to form the lens cup. This invagination is independent of the concomitant invagination of the underlying optic vesicle, and is probably due to forces operating within the lens ectoderm. As the lens cup deepens, its opening (lens pore) becomes progressively constricted until its lips meet and fuse, cutting off the lens vesicle internally and re-establishing continuity in the overlying ectoderm. Closure of the lens pore is attended by, and possibly accomplished by, a local and temporary restricted wave of cell death. Following closure of the lens pore, the cells at the back of the lens vesicle continue to elongate, under the influence of the neural retina, to form the lens fibers. As the fibers grow the cavity of the lens vesicle is obliterated. The lens cells toward the ectoderm, which do not elongate further, form the lens epithelium-.

The cuboidal lens epithelial cells which face the cornea continue to grow

6.

after the lens vesicle forms. As the cells rotate through the equator region, they take their places on the surface of the growing fiber mass. These cells differentiate into secondary lens fibers at the equator and elongate rapidly toward the poles of the lens where they meet with other fibers in planes of junction called sutures. As secondary fibers grow their nuclei become positioned at about the center of the fibers and form a convex lens bow outward. Since the newer fibers are always deposited superficially, the oldest fibers in the lens come to lie centrally and are referred to collectively as the lens nucleus. With time the lens cell nuclei in this region become pycnotic and finally disappear. The cell fibers, however, are not broken down and removed but remain in place. Thus the size and shape of the lens are controlled by factors which control the number; size and shape of the lens cells-

The teratogenic lens effect of FM-3422 probably occurred during the portion of organogenesis between differentiation of lens tissue from ectoderm and the formation of secondary lens fibers surrounding the embryonal lens nucleus. The exact time of the teratogenic insult and the morphogenesis of the abnormality were not determined in the study. The developmental lens abnormality appears to be unique because it has not been described as a compound-related abnormality. A similar-appearing structural lens abnormality has been reported to occur spontaneously in rat fetuses but with a very low incidence of 1.2%. The abnormality resembles the Fraser developmental lens abnormality of a mutant mouse strain which results from degenerative primary lens cells.

00169

7.

References

 Coulombre AJ, Coulombre JL: Abnormal Organogenesis of the Eye, in Wilson J, Fraser FC (eds): <u>Handbook of Teratology 2:Mechanisms</u> and <u>Pathogenesis</u>. New York, Plenum Press, 1977, pp 329-341.

۰.

- Coulombre AJ: The Eye, in DeHaan RL, Ursprung H (eds): Organogenesis. New York, Holt Rinehart and Winston, 1965, pp 227-232.
- 3. Mann I: <u>Development Abnormalities of the Eye</u>, 2nd ed. Philadelphia, JB Lippincott Co., 1957.
- 4. Weisse I, Niggeschulze A, Stotzer H: Spontaneous congenital cataracts in rats, mice and rabbits. Archiv Fuer Toxikologie <u>32</u>: pp 199-207, 1974.
- Hamai Y, Kuwabara T: Early cytologic changes of Fraser cataract. An electron microscopic study. Investigative Ophthalmology <u>14</u> (7): pp 517-527, 1975.

. . ..

8.

Table 1

Oral Teratology Study of FM-3422 in Rats Mean Body Weight Gains of Pregnant Rats Between Weighings - with Standard Deviations

٠

Dose	• .			Gesta	ation I	ay	
Group	<u>-</u>	6	9	12	15	20	
0 mg/kg/day	_ MEAN	28	17	26	29	71	
• mg/ xg/ day	STAN, DEV	5.5	7.5	5.8	4.9:	1,2, 1	
75 mg/kg/dav		30	<u>ga</u>	6 <u>a</u>	<u>2a</u>	69	
15 mg/kg/uay	STAN. DEV	14. 2	14.61	9.8	17.0:	15. 1	
37 5 mg/kg/dow	MEAN	28	6 <u>a</u>	17	14 <u>a</u>	69	
S7.5 Mg/Kg/day	STAN, DEV	5, 4	10.9	9, 8	10.4 :	15.8	
25 mg/kg/day	MEAN	27	11	20	22	73	
es marry day	STAN, DEV	11, 9	15.3	8, 9	5.4 :	11.6	

 $\frac{a}{2}$ Significantly lower than the control (Dunnett's t test p < 0.05)

(

ł

(

Oral Teratology Study of FN-3422 in Rats Mean Litter Data with matter

	Standard	
	and	
	Weights	_
1	Fetus	ations
	with	Devj
	Data	
	litter	
	7	

Dose Group	No. of Animals	ΞZ	ar Fr	TUSES	DEAD FETUSES	RESORPTION SITES	IMPLANTATION SITES	CORPORA LUTEA	MEAN WT. FETUS(G)
0 mg/kg/day	18	vovo Mi ti	4 ಯ ಗಗ	നെ ഗ ത്രി	ତ୍ତ ତ୍ତ	∿ ପ ସେ େମ	ូលស ភេសា	ળન જંરાં	4.Q 4 D
75 mg/kg/day	17	ଟ୍ଟ ମିର୍	4 0i M M	છન જેતાં	ଟେର ବେତି	හර වේල්	र्षे इ.स.	សេល ភ្លេស ក្ត	ыğ Ч Ч
37.5 mg/kg/day	20	ય બં	4 4 15 (1	∿ರು ಶೆ∵ೇ	තල වේල්	∿ ଅ ଅନ୍ତି	म छन् म	е е п г-	4 0 M 8
25 mg/kg/đay	21	ಗುಲ ಕ್ರೇ	യതം ഗ്പ്	स्क छन्ने स	ୟୁରୁ ସେହ	សស ៥០ខែ	19 19 19 19	ਅਨ ਜ਼ਿਜ਼	4 0 0 0 0
<mark>a</mark> Significantly	lower the	n the	contro	ol (Dunne	tt's t test	p < 0.05)			

00171

9.

ň

•

·				<u> </u>	
Finding	0 mg/kg/day	75 mg/kg/day	37.5 mg/kg/day	25 mg/kg/day	
Total fetuses Examined	161	167	195	213	
Runted	·	2		- 2	-
Umbilical hernia	1			2	
Total Normal Fetuses	160	165	195	209	
Total Abnormal Fetuses	1	2	0	4	~

Oral Teratology Study of FM-3422 in Rats Number of Fetuses with Gross Findings $\frac{a}{2}$

^a Treatment groups were not significantly different from control

(Chi-square p < 0.05)

ź

. _....

Oral Teratology Study of FM-3422 in Rats Number and Percent of Fetuses with Skeleton Findings

. .

							· · · · •	
		0	7	5 .	37	.5	2	5
Skeleton Finding	ng/k	g/day	ng/k	g/đay	ng/k	g/day	mg/k	g/day
Fontanelle not closed	27	(24)	26	(22)	- 25	(18)	28	(19)
Holes in parietal	1	(1)	l	(1)				· /
Parietal scalloped	1	(1)		• • •				
Frontal nonossified	21	(19)	62	(53) <u>a</u>	70	(51) 르	75	(50) <u>a</u>
Parietal nonossified	21	(19)	62	(53) <u>a</u>	70	(51) 횬	. 74	(50) <u>a</u>
Interparietal nonossified -	14	(12)	54	$(47)^{a}$	46	(33) 🚊	59	$(40)^{a}$
Occipital nonossified			1	(1)	-			
Sternebrae noncssified	80	(71)	100	(86) <u>a</u>	102	(74)	111	(75)
Sternebrae asymmetrical	10	(9)	42	(36) <u>a</u>	- 34	(25) 르	36	(24) <u>a</u>
Sternebrae bipartite	2	(2)	37	(32) ª	6	(4)	5	(3)
Sternebrae scrambled			1	(1)	- 1	(1)		
Sternebrae enlarged			1	(1)				
Sternebrae misshapen					1	(1)		
One sternebrae missing	23	(20)	32	(28)	31	(22)	33	(22)
Two sternebrae missing	2	(2)	- 16	(14) <u>a</u>	9	(7)	16	(11) <u>a</u>
Three sternebrae missing			1	(1)				
One body vertebrae missing			1	(1)				
13 ribs -	1	(1)	3	(3)	3	(2)	- 5	(3)
13 ribs spurred	3	(3)	32	(28) <u>a</u>	28	(20)르	9	(6)
Wavy ribs	5	(4)	8	(7)	4	(3)	2	(1)
Protrusion on ribs	8	(7)	12	(10)	5	(4)	7	(5)
One body of the vertebrae	29	(26)	15	(13)뇬	21	(15)5	30	- (20)
Two bodies of the vertebrae	17	(15)	. 4	(3) <u>p</u>	5	(4) <u>b</u>	3	(2) <u>b</u>
Three bodies of the vertebra	e				1	(1)	2	(1)
Four bodies of the vertebrae	2						1	(1)
Five bodies of the vertebrae bipartite	÷						1	(1)
Total Normal Fetuses	9	(8)	2	(2)	61	(4)	7	(5).
Total Abnormal Fetuses	104	(92)	114	(98)	132	(96)	142	(95)
Total Fetuses Examined	113		116		138		149	-

 $\frac{a}{b}$ Significantly higher than the control (Chi-square p < 0.05) Significantly lower than the control (Chi-square p < 0.05) () = percent of total examined

- .

ſ

í

ч.

.

Table 5

·,

.

.

1.0

t

ţ

.

Oral Teratology Study of FM-3422 in Rats Number and Percent of Fetuses with Internal Findings

Internal Finding	0	<u></u>	7	5	37	.5	2	5
	g/kg/	'day	mg/k	g/day	mg/k	g/day	mg/k	g/day
Fetuses with eye abnormalities	0		35	(69) <u>a</u>	29	(51) <u>a</u>	27	(42) ^a
Discoloration running through			7	(13)	2	(4)	1	(2)
Discoloration running through							_	
the lens of both eves							T	(2)
Discoloration running 1/2 to			16	(31) a	13	(23) <u>a</u>	10	വരാ ല
3/4 through the lens of -				1-27		()	2.10	(10)
One eye Discoloration compiler 1/2 to			~		_		_	
3/4 through the lans of			5	(10)	1	(2)	5	(8)
both eyes								
Discoloration in back of lens							2	(3)
Bubble on outside of lens and			1	(2)			_	(0)
discoloration running throu	gh							
the lens of one eye						я		
Cleft in the lens and discolo	ratio	n	5	(10)	7	(12)=	4	(6)
raining through the lens or								
Cleft in the lens and discolo	ratio	D			т	(3)		
running through the lens of					-	(2)		
both eyes								
Bubble on outside of lens					1	(2)	ı	(2)
cleft in the lens of one eye	e				_	1-1	-	(-)
Cleft in the lens of one eye			1	(2)	5	(9)	3	(5)
Open space in the rear of the							1	(2)
lens of one eye								
Small eyes			1	(2)				
cleft palate	· ·		7	(14)	3	_{5}		
Solarged atriums	-	(10)	-	(m)			2	(3)
the kidney	5	(10)	1	(2)				
Blood in the kidney			11	(22) <u>a</u>	2	(5)	2	(5)
parenchyma				(22)-	3	(5)	د	(3)
Abdominal cavity full of blood	1	(2)	Э	(6)			1	(2)
*				•				• •
Total Normal Fetuses	42	(87.5)	8	(16)	25	(44)	32	(50)
Total Abnormal Fetuses	6	(12.5)	43	(84)	32	(56)	32	(50)
Potal Petuses Evamined	48		51		57		C A	

 $\frac{a}{2}$ Significantly different from the control (Chi-square p< 0.05)

1249.0013

REPORT NO. 1610 DATE: 2/18/81

Oral Teratology Study of FM-3422 in Rats

Experiment No.:

. . .

Conducted At:

Inclusive Dosing Period:

Study Director:

0680TR0010

Safety Evaluation Laboratory Riker Laboratories, Inc. St. Paul, Minnesoto

August 19 to September 4, 1980

E. G. Gortner

1-22-81 Date tner

Senior Research Tachnologist Animal Reproduction-Teratology Study Director

Elden & hamprecht 1-22-8)

E. G. Lamprecht, DVM, PhD Date Research Veterinary Pathologist

Case, DVM, PhD Date

Manager, Pathology-Toxicology Safety Evaluation Laboratory

10 077924

3MA00326722

Summary

Oral administration of FM-3422 at 75, 37.5 and 25 mg/kg/day to pregnant Spraque-Dawley rats during days 6 through 15 of gestation (period of organogenesis) was teratogenic to rat fetuses. Teratogenic changes included a developmental eye abnormality, cleft palate, blood in the kidney parenchyma and sternebrae malformations. The developmental eye abnormality appeared to be an arrest in development of the primary lens fibers forming the embryonal lens nucleus followed by secondary aberrations of the secondary lens fibers of the fetal nucleus. The proportions of fetuses with the lens changes were significantly higher in all FM-3422 groups than in the control group. Cleft palates were produced in the 75 and 37.5 mg/kg/day groups. All three groups receiving compound had fetuses with blood in the kidney parenchyma. The sternebrae changes, although normally considered skeleton aberrations, were viewed as compound-related malformations because of their severity. FM-3422 also produced an increase in other fetal skeleton aberrations.

FM-3422 was not embryotoxic and did not affect the ovaries or reproductive tract contents of the dams.

FM-3422 was maternally toxic to the 75 and 37.5 mg/kg/day dose animals in reducing their group mean body weight gain during the dosing interval. Toxic clinical signs and deaths occurred in only the 75 mg/kg/day dose group.

1997 - 1997 1997 - 1997

10 077925

significantly higher proportion of fetuses with bipartite sternebrae than the control group.

An increase in other skeleton abertations also occurred as the result of FM-3422 administration. These skeleton abertations included nonossification changes of the cranial bones and sternebrae plus other sternebrae and rib changes (Table 4). The high dose group had significantly higher proportions of fetuses with all of these skeleton changes than the control group. The mid and low dose groups had significantly higher proportions of fetuses with some of these changes than the control group; notably nonossification of the cranial bones, sternebrae missing and 13 ribs spurred. The skeleton abertations found are generally considered minor but they are of appreciable significance in this study with FM-3422 because of the high proportion of fetuses with the abnormalities.

The control group had a higher proportion of fetuses with one or two bodies of the vertebrae bipartite than the three treatment groups (Table 4). This difference was significant in all instances except for the finding of one body of the vertebrae bipartite in the low dose group.

FM-3422 administration produced the teratogenic effect of cleft palate in the high and mid dose groups and blood in the kidney parenchyma in all three dose groups. The proportions of fetuses with cleft palate and blood in the kidney parenchyma were significantly higher in the high dose group than in the control group (Table 5). No cleft palates were present in control and low dose fetuses examined.

FM-3422 was teratogenic to the eye of the rat at all dose levels administered in this study. The teratogenic effect was a developmental eye abnormality which appeared to be an arrest in development of the primary lens fibers forming the embryonal lens nucleus, followed by secondary aberrations of the secondary lens fibers of the fetal nucleus. All eye abnormalities were localized to the area of the embryonal lens nucleus although a variety of morphological appearances were present within that location. The range of morphological appearances as observed under the dissecting microscope varied from a slight discoloration running through the lens to a discoloration of part of the lens and the presence of a cleft beneath the lens epithelium (Table 5). Histologically the discolorations were due to the presence of lens vesicle remnants forming clefts or surrounding the lens nucleus. Also contributing to the discolorations were primary lens fibers which appeared to have not elongated and the possible presence of degenerated epitrichial cells. Secondary lens fiber development progressed normally except immediately surrounding the abnormal embryonal nucleus. Prominant secondary aberrations of secondary lens fibers include V-shaped clefts between the embryonal nucleus and lens epithelium and lens vesicle remnants surrounding the nucleus.

The proportion of fetuses with the lens abnormality in one or both lenses was significantly higher in all groups than in the control group (Table 5).

10 077926

Results and Discussion

•

FM-3422 was maternally toxic to the high and mid dose groups (75 and 37.5 mg/kg/day) in reducing their group mean body weight gain during the dosing interval. All groups had lower mean weight gain than the controls at all weighings during the dosing interval of days 6 through 15 of gestation (Table 1). In the case of the high dose group at gestation days 9, 12 and 15 and in the case of the mid dose group at gestation days 9 and 15, the group mean weight gains were significantly lower than the mean weight gains of the control group (0 mg/kg/day). The lower mean weight gains of the high dosing interval were responsible for their significantly lower mean body weights between the end of dosing and the termination of the study (Appendix V). The mean body weights and mean weight gains of the low dose group (25 mg/kg/day) were not significantly different from the control.

Abnormal clinical signs were observed and deaths occurred only in the high dose group. Three rats in the high dose group died. One rat died without clinical signs. Two of the rats that died plus one surviving rat had abnormal compound-related clinical signs which included some of the following: thin, lethargic, ataxic, blood in stool, urinary incontinance and bloody mares. The onset of abnormal clinical signs was on day 11 but the signs disappeared in the surviving rat by day 19 of gestation. The remaining 18 high dose rats and the mid and low dose rats did not have abnormal compound-related clinical signs.

The compound was not embryotoxic and did not affect the ovaries or reproductive tract contents of the dans. The mean number of male, female, total and dead fetuses, the mean number of resorption sites, implantation sites and corpora lutes of the three FM-3422 dose groups were not significantly different from the control (Table 2, Appendix VI).

FM-3422 was not fetal toxic. However, the combination of reduced maternal body weight gain (Table 1) plus higher numbers of fetuses in the treatment groups than the control group (Table 2 Appendix VI) resulted in mean fetus weights of all FM-3422 groups which were significantly lower than the control mean fetus weight. The reduced mean fetus weights were not associated with an increase in runting or other gross fetus findings (Table 3).

FM-3422 administration resulted in malformations in fetal sternebrae. The changes, although normally considered skeleton aberrations, were interpreted as compound-related malformations because of their severity. The severity and often the incidence of sternebrae malformations were greater in the three treatment groups than the control group. These malformations included the following: sternebrae asymmetrical, sternebrae bipartite, sternebrae scrambled, sternebrae enlarged, sternebrae missing and sternebrae misshapen (Table 4). All three FM-3422 dose groups had significantly higher proportions of fetuses with sternebrae asymmetrical than the control group. In addition, the high dose group had a

10 077927

Introduction

This teratology study $\frac{a}{a}$ in rats was conducted to evaluate the embryotoxic and teratogenic effects of orally administered FM-3422. The study was sponsored by 3M Commercial Chemical Division, St. Paul, Minnesota and was conducted by the Safety Evaluation Laboratory, Riker Laboratories. Inc., St. Paul, Minnesota. Two sets of compound administration groups were dosed between August 19 and September 4. 1980. The protocol and list of the principal participants and supervisory personnel can be found in Appendices I and II respectively.

All portions of this study were conducted according to the Good Laboratory Practice (GLP) regulations and the Safety Evaluation Laboratory Standard Operating Procedures (see Appendix III for Quality Assurance Unit statment). The storage location for specimens, raw data and a copy of the final report is maintained in the Safety Evaluation Laboratory's record archives.

Methods

Time mated Sprague Dawley derived rats were obtained from Charles River Breeding Laboratory and assigned cages according to a computer-generated random numbers table. The rats were then divided into four groups of 22 animals weighing 140 to 240 grams. The rats were housed individually in hanging stainless steel cages with wire mesh floors and fronts in a temperature and humidity controlled room. Food^b and water were available ad libitum. The lights were on a 12 hour light/dark cycle.

The animals were observed daily from day 3 through day 20 of gestation for abnormal clinical signs. Body weights were recorded on days 3, 6, 9, 12, 15 and 20 of gestation and the rats dosed accordingly using a constant dose volume of 5 ml/kg of body weight. The four groups were dosed with FM-3422 (Lot 784) suspended daily in corn oil at 0, 75, 37.5 or 25 mg/kg/day. FM-3422 was administered daily by oral intubation with a syringe equipped with a ball-tipped intubation needle to the rats on days 6 through 15 gestation (day 0 indicated by sperm-positive vaginal smear). FM-3422 analytical characterization (see Appendix IV) was provided by 3M Commercial Chemical Division, St. Paul, Minnesota.

All surviving animals were sacrificed on day 20 by cervical dislocation and the ovaries and uterus, including its contents, were examined immediately to determine the following: number of corpora lutes, number of viable fetuses, number of resorption sites, pup weights and sex, and any cross fetal abnormalities. Approximately one-third of the fetuses were fixed in Bouin's solution for subsequent free-hand sectioning by the Wilson technique to determine visceral abnormalities. The remaining fetuses were preserved in alcohol for clearing and staining of the skeleton with alizarin red to detect skeletal abnormalities. Selected free-hand sections were processed for histological evaluation.

 $\frac{a}{b}$ Riker Experiment No. 0680TR0010 — Purina Laboratory Chow, Ralston Purina Company, St. Louis, MO

10 077928

โลกแหน่	1	
1 28		
0.555		

No lens abnormalities occurred in the control group. A no-effect dose level for the teratogenic abnormality was not established in this study.

Further Discussion on Lens Embryology

Lens structural and functional requirements are met during embryonic development by the differentiation of highly specialized populations of cells from undifferentiated procursers and by the coordinated morphogenesis of the resulting tissues. Both processes are controlled to a remarkable extent by interactions which occur among emerging tissues. Each tissue of the eye is brought to its final state of differentiation, its cell population, size and its definitive geometry, not only by intrinsic processes, but also by extrinsic influences exerted by neighboring tissues.

The embryonal origin of the lens is undifferentiated ectoderm. The tip of the optic vesicle, presumably the neural retina, plays the final role in inducing lens from overlying ectoderm and in aligning the lens precisely with the rest of the eye. Additional action of tissues derived from endoderm (foregut) and mesoderm (heart) on the same target tissue decreases the probability that lens formation would be aborted by accidents during the early phases of induction. While the nature of the inductive influence remains unknown, there are indications that substances may be transferred from the presumptive neural retina to the overlying ectoderm during induction. A prolonged period of inductive interaction not only increases the probability that lens induction will occur successfully in the face of interference, but provides a mechanism for continuously adjusting the size, shape, position and orientation of the lens to that of the reting-.

During the early stages of the inductive process, the ectodermal cells immediately overlying the tip of the optic vesicle elongate perpendicularly to the body surface to form a thickened disc (lens placode). The change in cell shape is accomplished without change in cell volume. The number of cells, however, continues to increase during this period. Toward the end of lens placode formation, acidophilic fibrils appear in the apices of the lens placode cells. At about this time, the placode invaginates to form the lens cup. This invagination is independent of the concomitant invagination of the underlying optic vesicle, and is probably due to forces operating within the lens ectoderm. As the lens cup deepens, its opening (lens pore) becomes progressively constricted until its lips meet and fuse, cutting off the lens vesicle internally and re-establishing continuity in the overlying ectoderm. Closure of the lens pore is attended by, and possibly accomplished by, a local and temporary restricted wave of cell death. Following closure of the lens pore, the cells at the back of the lens vesicle continue to elongate, under the influence of the neural retina, to form the lens fibers. As the fibers grow the cavity of the lens vesicle is obliterated. The lens cells toward the ectoderm, which do not elongate further. form the lens epithelium-.

The cuboidal lens epithelial cells which face the cornea continue to grow

10 077929

after the lens vesicle forms. As the cells rotate through the equator region, they take their places on the surface of the growing fiber mass. These cells differentiate into secondary lens fibers at the equator and elongate rapidly toward the poles of the lens where they meet with other fibers in planes of junction called sutures. As secondary fibers grow their nuclei become positioned at about the center of the fibers and form a convex lens bow outward. Since the newer fibers are always deposited superficially, the oldest fibers in the lens come to lie centrally and are referred to collectively as the lens nucleus. With time the lens cell nuclei in this region become pycnotic and finally disappear. The cell fibers, however, are not broken down and removed but remain in place. Thus the size and shape of the lens are controlled by factors which control the number, size and shape of the lens cells².

The teratogenic lens effect of FM-3422 probably occurred during the portion of organogenesis between differentiation of lens tissue from ectoderm and the formation of secondary lens fibers surrounding the embryonal lens nucleus. The exact time of the teratogenic insult and the morphogenesis of the abnormality were not determined in the study. The developmental lens abnormality appears to be unique because it has not been described as a compound-related abnormality². A similar-appearing structural lens abnormality has been reported to occur apontaneously in rat fetuses but with a very low incidence of 1.25^4 . The abnormality resembles the Praser developmental lens abnormality of a mutant mouse strain which results from degenerative primary lens cells.

10 077930

6

CONFIGURATION

References

. .

- Coulombre AJ, Coulombre JL: Abnormal Organogenesis of the Eye, in Wilson J, Praser FC (eds): <u>Handbook of Teratology 2:Mechanisms</u> and <u>Pathogenesis</u>. New York, Plenum Press, 1977, pp 329-341.
- Coulombre AJ: The Eye, in DeHaan RL, Ursprung H (eds): <u>Organogenesis</u>. New York, Holt Rinehart and Winston, 1965, pp 227-232.
- 3. Mann I: <u>Development Abnormalities of the Eye</u>, 2nd ed. Philadelphia, JB Lippincott Co., 1957.
- Weisse I, Niggeschulze A, Stotzer H: Spontaneous congenital cataracts in rats, mice and rabbits. Archiv Puer Toxikologie <u>32</u>: pp 199-207, 1974.

-

 Bamai Y, Kuwabara T: Early cytologic changes of Fraser cataract. An electron microscopic study. Investigative Ophthalmology <u>14</u> (7): pp 517-527, 1975.

10 077931

Table 1

Oral Teratology Study of FM-3422 in Rats Mean Body Weight Gains of Pregnant Rats Between Weighings with Standard Deviations

Scoup 6 9 12 15 20 mg/kg/day MERN 28 17 26 29 71 mg/kg/day STAN DEV 5 7 5 6 4 9 12 15 20
mg/kg/day MERN 28 17 26 29 71 STAN. DEV 5.5 7.5 5.8 4.9 12.1
mg/kg/day MERN 28 17 26 29 71 STAN. DEV 5.5 7.5 5.8 4.9 12.1
STAN. DEV 5.5 7.5 5.8 4.9 12.1
5 mg/kg/day MEAN 30 . 04 64 24 69
STAN, DEV 14, 2 14, 6 19, 8 17, 0 15, 1
MEAN 28 68 17 148 69
7.5 mg/kg/day STAN DEV 5.4 10.9 9.8 10.4 15.8
5 mg/kg/day MEAN 27 11 20 22 70
STAN DEV 11.9 15.3 8.9 5.4 11 6

4. .

-

.

 $\frac{\mathbf{a}}{2}$ Significantly lower than the control (Dunnett's t test p<0.05)

10 077932

ε.

...

enter e subliciones e la sublición de

-

Oral Teratology Study of FN-3422 in Rats Hean Litter Data with Fetus Weights and Standard Deviations

Dose Group	No. of Animals	VIABLE M F	FETUSES TOTAL	DEAD FETUSES	RESORPTION	IMFLANTATION SITES	COPPORA LUTER	MEAN WT.
) mg/kg/day	16	3.6 5.	4 8.9 9 2 6	0.0 0.0	9.7 * A	9.6	9 9 5 1	4.4
75 mg/kg/day	17	5.1 4.	7 9.8	0.1	9.5	10 4	18.5	3.7≜
17 5 mc/kc/Am	20	2.1 2.	3 2.1	0.2 8 9	0.6 97	1.9 18 4	2.2	e. 5
alla mälväladi	20	2.1 2.	1 1.9	6.0	0.9	1.6	17	e. 3
25 mg/kg/day	21	4.3 5. 1.6 1.	8 10.1 9 1.9	0.0 0.0	0.5 6.5	10.7 2.0	11 2 1.9	4,0 <u>4</u> 0,3

- 1

·

 $\frac{\mathbf{z}}{\mathbf{z}}$ Significantly lower than the control (Dunnett's t test p < 0.05)

_

.

3MA00326731

φ.

وجين الجاري ومريي

÷ *

...

· • •

Oral Teratology Study of FM-3422 in Rats Number of Fetuses with Gross Findings^a

Finding	U mg/kg/day	75 mg/kg/day	37.5 mg/kg/day	25 zng/kg/day
Total Fetuses Examined	161	167	195	213
Runted		2		2
Umbilical hernia	1			2
Total Normal Fetuses	160	165	195	209
Total Abnormal Fetuses	I	. 2	0	4

A Treatment groups were not significantly different from control (Chi-square p < 0.05)

DISTANCE

10 077934

10.

3MA00326732

Oral Teratology Study of FM-3422 in Rate Number and Percent of Fetuses with Skeleton Findings

		0		'5	37	.5	2	5
Skeleton Finding	mg/k	g/day	mg/k	g/day	mg/k	g/đay	mg/k	g/day
Fontanelle not closed	27	(24)	26	(22)	25	(18)	28	(19)
Holes in parietal	1	(1)	1	(1)				••
Parietal scalloped	1	(1)						
Frontal nonossified	21	(19)	62	(53) 르	70	(51) ª	75	(50) <u>à</u>
Parietal nonossified	21	(19)	62	(53) 🐴	70	(51) 르	74	(50)로
Interparietal nonossified	14	(12)	54	(47) 2	46	(33) 4	59	{40} ^a
Occipital nonossified		. ,	1	(1)	-		-	
Sternebrae nonossified	80	(71)	100	(86) =	102	(74)	111	(75)
Sternebrae asymmetrical	10	(9)	42	(36) 4	34	(25) <u>a</u>	36	(24) ª
Sternebrae bipartite	2	(2)	37	(32) 흔	6	(4)	5	(3)
Sternebrae scrambled			· 1	(1)	1	(1)		
Sternebrae enlarged			1	(1)				
Sternebrae misshapen					1	(1)		
One sternebrae missing	23	(20)	32	(28)	31	(22)	33	(22)
Two sternebrae missing	2	(2)	16	(14) ª	9	(7)	16	(11) ^a
Three sternebrae missing			1	(1)				
One body vertebrae missing			1	(1)				
13 ribs	1	(1)	3	(3)	3	(2)	5	(3)
13 ribs spurred	3	(3)	32	(28) <u>추</u>	28	(20) <u>a</u>	9	(6)
Wavy ribs	5	(4)	8	(7)	4	(3)	2	(1)
Protrusion on ribs	8	(7)	12	(10)	5	(4)	7	(5)
One body of the vertebrae bipartite	29	(26)	15	(13) <u>Þ</u>	21	(15) <u>b</u>	30	(20)
Two bodies of the vertebrae bipartite	17	(15)	4	(3)뇬	5	(4)ੈ <u>₽</u>	3	(2) <u>Þ</u>
Three bodies of the vertebra bipartite	e				1	(1)	2	(1)
Four bodies of the vertebrae bipartite	:						1	(1)
Five bodies of the vertebrae bipartite	:						1	(1)
Total Normal Fetuses	9	(8)	2	(2)	6	(4)	7	(5)
Total Abnormal Fetuses	104	(92)	114	(98)	132	(96)	142	(95)
Total Fetuses Examined	113		116		138		149	

a Significantly higher than the control (Chi-square p < 0.05) b Significantly lower than the control (Chi-square p < 0.05) () = percent of total examined

10 077935

•

12.

Table 5

Oral Teratology Study of FM-3422 in Rats Number and Percent of Fetuses with Internal Findings

Internal Finding	0		75		37.5		25	
internal tinding	_mg/kg/	/day	mg/k	<u>ig/day</u>	mg/X	ig∕đay	mg/k	g/day
			_					
Fetuses with eye abnormalitie Discoloration running throu the lens of one eye	s 0 Igh		35 7	(69) <u>ª</u> (13)	29 2	(51) ^ª (4)	27 1	(42) <u>측</u> (2)
Discoloration running throu the lars of both even	фh						1	(2)
Discoloration running 1/2 t 3/4 through the lens of one eye	o		16	(31) <u>a</u>	13	(23) ^a	10	(16) <u>a</u>
Discoloration running 1/2 t 3/4 through the lens of both eyes	o		5	(10)	1	(2)	5	(8)
Discoloration in back of le Bubble on outside of lens a discoloration running thr	ns nd ough		L	(2)			2	(3)
Cleft in the lans and disco running through the lens one eve	loratio of	n	5	(10)	7	(12) ^ª	4	(6)
Cleft in the lens and disco. running through the lens of both eves	loratio of	n,			1	(2)		
Bubble on outside of lens cleft in the lens of one	eve				1	(2)	1	(2)
Cleft in the lens of one ey Open space in the rear of the lens of one eye	e		1	(2)	5	(9)	3 1	(5) (2)
Small eyes Cleft palate Enlarged atriums			1 7	(2) (14) a	3	(5)	2	(3)
Enlarged renal pelvis area in the kidney	5	(10)	1	{2}			-	(3)
Blood in the kidney parenchyma			11	(22) a	3	(5)	3	(£)
Abdominal cavity full of blood	3 1	(2)	3	(ፉ)			1	(2)
Total Normal Fetuses Total Abnormal Fetuses Total Fetuses Examined	42 6 48	(87.5) (12.5)	8 43 51	(16) (84)	25 32 57	(44) (56)	32 32 64	(50) (50)

 $\frac{a}{2}$ Significantly different from the control (Chi-square p< 0.05)

.

10 077936

-- . .

Appendix I

Oral Teratology Study of FM-3422 in Rats Protocol

Objective

A teratology study will be used to evaluate the embryotoxic and teratogenic effects of orally administered FM-3422 to pregnant rats during the period of organogenesis. The procedure complies with the general recommondations of the FDA issued in January, 1966 ("Guidelines for Reproduction Studies for Safety Evaluation of Drugs for Human Use"). The study will be conducted according to the 1978 Good Laboratory Practice regulations and Safety Evaluation Laboratory's Standard Operating Procedures.

Sponsor

3M Commercial Chemical Division, St. Paul, Minnesota.

Testing Facility

Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesota.

Study Director

E. G. Gortner

Start of Dosing

Mid August, 1980.

Test System

Eighty-eight sexually mature, time mated Sprague-Dawley derived female rats from Charles River Breeding Laboratory will be housed in hanging stainless steel cages with wire mesh floors and fronts in a temperature and humidity controlled room. This strain of rats will be used because of historical control data and time mated females are readily avilable. Purina Laboratory Chow and water will be available ad litibum. The lights will be on a 12 hour light/dark cycle.

Test System Identification

Each animal will be ear tagged and that number will be indicated on the outside of the cage.

Randomization

The animals will be assigned cages according to a computer-generated random numbers table.

10 077937

....

۱j.

14.

Appendix 1 (Concluded)

Control Article

Corn oil.

Test Article

FM-3422.

Analytical Specifications

The test article, composition and purity will be determined by the Sponsor (3M Commercial Chemical group) prior to the start of the study and at the end of dosing.

Dosage Levels and Experiment Design

The test article will be suspended in corn oil daily. The test article suspension and control article will be administered by oral intubation to the rats on days 6 through 15 of gestation according to the following:

Dose Group	Dose Level	Group Size
High	75 mg/kg/day	22 Ş
Mid	37.5 mg/kg/day	22 ¥
Low	25 mg/kg/day	22 \$
Control	0 mg/kg/day	22 ¥

The oral route of administration will be used because toxicity has been defined by this route in a rangefinder study. No dietary contaminants are known to interfere with the test article.

The animals will be observed daily from day 3 through day 20 of gestation for abnormal clinical signs. Body weights will be recorded on days 3, 6, 9, 12, 15 and 20 or pregnancy and the rats dosed accordingly using a constant dose volume of 5 ml/kg of body weight.

The females will be killed on day 20 and the ovaries, uterus and its contents will be examined to determine: number of corpora lutea, number of fetuses (live and dead), number of resorption sites, number of implantation sites, pup weight and gross abnormalities. Approximately one-third of the pups will be fixed in Bouin's solution for subsequent free-hand sectioning by the Wilson technique to determine any viscoral abnormalities using a dissecting microscope. The remaining approximately two-thirds of the pups will be fixed in ethyl alcohol for subsequent skeletal examination after clearing and staining with alizarin red.

Data Analysis and Final Report

The proposed statistical methods to be used for analysis of the data are: Dunnett's t test for dam and pup weights, number of fetuses, number of resorption sites, number of implantation sites and number of corpora lutea; chi-square for percent abnormalities. The proposed date for the final report is 2-3 months after detailed pup examinations have been completed (approximately first quarter, 1981).

١.

10 077938

3MA00326736

Appendix II

Oral Teratology Study of FM-3422 in Rats List of Principal Participating Personnel

NAME	FUNCTION
Edwin G. Gortner	Study Director
Elden G. Lamprecht	Veterinary Pathologist
Cathy E. Ludemann	Coordinator-Histology
Gary C. Pecore	Supervisor-Animal Care
Loren O. Wiseth	Technician

.

•

10 077939

15.

.

3MA00326737

Appendix III STATEMENT OF QUALITY ASSURANCE

STUDY NUMBER: 0680TR0010 TITLE: 0ral Teratology Study of FM-3422 in Rats

Audits and/or inspections were performed by the Riker Quality Assurance Unit for the above titled study, and reported to the study director and to management as follows:

Date Performed	Date Reported
20 August 1980	21 August 1980
2 September 1980	4 September 1980
20 and 21 January 1981	22 January 1981
22 January 1981	22 Janaury 1981

hation

J.E. Orterstrom Laboratory Quality Assurance Riker Laboratories, Inc.

January 22, 1981 Date

10 077940

Test and/or Control Article Characterization

for

FM-3422 LOT 784

- The identity strength, uniformity, composition, purity or other pertinent characterizations of the test and/or control substances have been determined and documented as of <u>MAV 8,1960</u>
- 2. The method of synthesis or origin of the test and control substances, including their amount and the method of bioassay (if applicable) is documented.

yes ____ no ____

3. The stability of the test and/or control substances have been determined or will be determined as of <u>Completion of Tox</u> Testing If Necessary

The above information and documentation are located in the sponsor's records.

D. Lichen 5/21/10 Sponsor Date

ne l'inte rwo

10 077941

17.

3MA00326739

Ç

Ę

15.

Appendix V

Oral Teratology Study of FM-3422 in Rats Individual and Mean Body Weights of Rats With Standard Deviations

Dose Group			St	udy Da	<u>y</u>	
and Rat No.	3	6	9	12	15	20

6 MGZKGZDAY

NOF	14756	264	230	248	276	고요네	180
NOR	14757	196	234	242	278	204	271
NOH:	14760	213	250	257	286	- B10	15.5
NOF	14776	184	209	222	243	278	129
NOR	14777	272	262	274	207	341	426
NØR	14778	186	219	232	2 - 4	297	277
NOH	14780	226	255	271	300	325	194
NØR	14796	190	220	222	254	280	<u>_</u> 4 .
NUH	15385	197	211	251	271	301	284
NØR	15387	188	216	238	264	292	17.5
NOF	15388	196	228	254	286	322	405
NØR.	15389	193	222	242	269	293	245
NØR	15400	184	299	219	22t)	260	210
NOF	15406	195	220	240	261	299	27-
NØR	15407	238	267	272	287	212	Zero
NØR	15408	239	258	278	306	331	401
NÜR	15409	193	218	240	263	297	279
NØR	15425	154	171	206	232	255	242
г	1E AN	260	229	245	271	300	Z71
1972	ε devi	21.8	23.4	26.0	22.1	22.6	36.7

NON PREGNANT ANIMALS

-

.

NØR	14758	212	244	259	273	268	293
NØR	14759	210	223	226	242	249	264
NØR	14779	194	222	227	255	243	250
NOR	15386	192	225	243	244	252	280

10 077942

3MA00326740

Appendix V (Continued)

Oral Teratology Study of FM-3422 in Rats Individual and Mean Body Weights of Rats With Standard Deviations

Dose Group			St	udy Da	<u> У</u>		
and Rat No.	3	6	9	12	15	20	

75 MG/KG/DAY

.

١

(

00P	14761	215	247	238	255	252	307
00R	14762	$2 \ge 4$	252	218	217	243	121
00P.	14763	188	211	268	230	246	220
00R	14764	193	220	220	245	250	309
OØP:	14765	230	250	267	292	303	384
OØR:	14782	202	233	209	294	210	267
00R	14 783	267	245	237	264	262	217
OOR	14785	208	246	249	281	282	370
OØR	14797	188	214	210	237	225	291
00R	15390	-176	209	222	226	186	231
00R	15391	204	238	228	191	168	in#
00R	15392	212	225	233	232	225	235
OØR:	1 5393	234	252	251	263	265	211
00R	1 5394	194	222	227	237	240	309
OØR:	15410	185	211	215	185	182	260
00R	15411	140	221	231	216	237	313
OBE	15414	219	240	261	255	259	351
00P.	15426	195	216	243	243	276	25-3
· •	1EAN	201	231	232	23,2 <u>4</u>	<u>طن ۽ د</u>	<u>्र</u> ाष्ट्र
STAP	I DEV	22.1	16. 5	17.6	28.8	35.7	46 2

NON PREGNANT ANIMALS

00R	14781	268	243	208	165	0	0ª
00F:	14784	195	221	194	177	204	229
00F:	15412	224	245	229	179	149	· 6ª
ÚØR:	15413	223	241	248	240	242	258

 $\frac{a}{b}$ Rat died $\frac{b}{b}$ Significantly lower than the control (Dunnett's t test p < 0.05)

10 077943

Appendix V (Continued)

Oral Teratology Study of FM-3422 in Rats Individual and Mean Body Weights of Rats With Standard Deviations

Dose Group	_		S	itudy D	ay		
and Rat No.	3	- 6	- 9	12	15	20	
							_
37.5 MG2K(5.40						
PØR 14766	183	214	218	237	254	201	
POR 14767	209	250	240	269	261	324	
POR 14768	268	234	238	264	287	368	
PØR 14769	218	245	249	273	294	262	
POR 14770	212	242	251	286	299	277	
POR 14787	187	215	223	250	267	319	
PØR 14788	176	264	209	226	245	300	
POR 14769	197	222	212	234	245	202	
POR 14790	192	221	225	251	278	BI6	
POR 14798	196	228	210	236	238	300	
PØR 15395	182	294	227	240	262	352	
POR 15396	191	212	233	235	243	216	
POR 15397	217	245	266	282	207	282	
PØR 15398	231	249	256	269	279	BEU	
P0R 15399	189	217	225	237	245	303	
POR 15415	205	239	24€	269	292	324	
POR 15416	210	243	254	270	295	371	
POR 15417	222	244	245	257	262	医碘色	
POR 15418	196	231	252	267	287	355	
POR 15419	240	263	257	24	237	340	
PØR 15427	192	216	231	238	245	268	
MEAN	203	230	237	234 <u>b</u>	2682	337£	

STAN. DEV 16. 8 16. 7 16. 9 17. 3 22. 7 31. 3

NON PREGNANT ANIMALS

1

POR 14786 188 206 213 214 222 226

 $\frac{b}{c}$ Significantly lower than the control (Dunnett's t test p < 0.05)

10 077944

3MA00326742

Appendix V (Concluded)

ī.

;

.

Oral Teratology Study of FM-3422 in Rats Individual and Mean Body Weights of Rats With Standard Deviations^C

Dose Group		Study Day					
and Rat No.	3	6	9	12	15	20	
25 MG/KG/	DAY						
QOR 14771	232	261	265	282	295	376	
QOR 14772	212	240	247	260		247	
00R 14773	192	223	228	251	270	222	
QOR 14774	182	210	215	-236	256	226	
QØR 14775	262	2.2	241	269	289	244	
QOR 14791	217	251	262	291	315	2.8.4	
00F: 14792	261	229	242	-270	291		
QBR 14793	221	254	251	281	300	375	
QOP 14794	216	248	264	291	311	176	
QOR 14795	193	223	223	2.00	276	245	
00F 14799	187	212	207	226	255	2.40	
QOP 15400	153	131	201	214	242	247	
QOR 15 401	171	217	233	245	269	34e	
QOR 15402	206	238	255	269	297	294	
QOR 15403	179	212	220	229	247	311	
QOR 15404	192	229	254	274	308	392	
00R 15420	214	241	250	262	291	367	
QOR 15421	183	207	219	234	255	164	
- 00R 15422	185	216	231	260	280	361	
00R 15423	228	253	262	257	282	265	
Q0R 15424	227	257	259	280	302	376	
MËGN	284	228	240	254	204	766	
CTON NEW	40 0	50 G	40 0	207	102	200	
STREET	TN 6	28.0	19. 9	21.3	21, 6	27 2	

NON PREGNANT ANIMALS QOR 15428 196 225 231 234 236 271 C Means not significantly different from control (Dunnett's t test p < 0.05)

10 077945

3MA00326743

Appendix VI

Oral Teratology Study of FM-3422 in Rats Individual Litter Data With Mean Fetus Weights

Dose Group and Rat No.	V)	IABLE M F	FETUSE TOTE	ES DEAD AL FETUSES	RESOF PTION SITES	2 IMPLA 4 TATIC 5 SITE	AN CORPEN ON LUTEN	HEAN HVG		FETUS M		NIKG.
b_mg/kg/day												
HOR 15385	4	7	11	0	0	11	7	1 2	ŝ	3. 3	3.	4
14400 <u>1543</u> 86 -	NUT	PREG	NHNI	-	~			·		.		~
1996 19387 1941 45300	4	8	12	9	6	14	11	inia. € La E		2. X.	-	5
1006 10288 - Nad 45784 -	<u>ت</u> ۸	2	71	9 9	1	1e A	10	ासा द् जिल्ला	,	4.8. 4.5	4.	4
いいい エンシロテー		د ح	-	6	4	44	р С	94.94 .1.4	•	4.0) 4.5		•
000 10400 001 15406	2	2 6	С 4	6	2	11	с 1й	- 1 - 4 - 3 - 5		9.U 1.1	.د. م	ŝ
166 15407 166 15407		6	- G	й	е Й	- <u>-</u>	1.1	4.1		т. т. 3 Т.		1
40E 15408	4	š	ģ	е Ю	о Ю	9	17	4 9		a 🗧	4	ŝ
104 15409	į	7	10	ē.	ต์	1.6	10	4 2		ब रे	4	2
NUK 15425	3	4	Ż	ē	ō	7		4 9		5.0	4.	<u> </u>
104 14756	4	7	11	6	0	11	11	4 2		4. 5	4.	ø
aut 14757	2	6	8	Θ	1	9	÷	4 4		4.4	4.	4
ROP: 14758	NOT	PREG	NANT									
RUK 14759	NOT	NOT PREGNANT										
POP 14760	1	2	3	0	1	4	8	4. 7		4.5	4.	7
duk 14776	3	7	10	0	0	10	12	4. 2		4.3	4.	1
10F 14777	7	6	13	0	1	14	14	4 0		4. Ø	З.	9
00E 14 778 -	7	4	11	0	Ø	11	11	5, 1		5. 2	4.	8
00E 14779	NOT	OT PREGNANT										
10F 14780	4	4	e	0	1	9	11	5 5		5.7	5.	3
INF 14796	5	4	÷	0	1	10	11	2.2		3.8	З.	Ŷ

. -

€

£

5 % .

Appendix VI (Continued)

Oral Teratology Study of FM-3422 in Rats

Individual Litter Data With Mean Ferus Weights

លារម ការជ័	Group Kat No.	V1ABL M	E FE F	TUSES TOTAL	DEAD FETUSES	RESOR PTION SITES	IMPLAN TATION SITES	CORFRH LUTEA	мени Аус	FETUS M	ИТКЦ) Е
/ <u>0_π</u>	ng/kg/day										
un e r	15290	व	3	7	Û	2	9	9	2.8	8 2 9	2.6
oo lie	15291	DEAL	•								
t is the	15392	6	3	9	ß	1	10	<u>e</u>	2.5	5 3.4	3.5
1.ÖP.	15093	- 2	4	E.	6	1	7	ē	Ξ. ε	5 2 5	2.6
en de.	15394	4	5	9	Ø	1	10	9	- 2.5	5 3.7	3.4
E DOMES	15410	5	3	8	0	0	8	8		2.5	2.0
UUI-	15411	4	- 7	11	0	G	11	12	S. 4	4 3.7	3.3
entite.	15412	DEAL	•								
cuht.	15413	NOT	PREC	NANT							
n n Hei	15414	2	11	12	1	6	14	14	4.1	3.9	4. 1
- Arju -	15426	5	7	12	0	e	12	12	4.2	4.4	4.1
ru de	14761	8	2	20	0	6	10	12	2.4	3.4	3.3
nut-	14762	6	4	12	Q	କ	12	47	2.2	2.3	
roble.	14763	8	2	10	Ø	1	11	11	3.7	3.8	3.1
1.0010-	14764	5	4		0	Ø	9	9	2. e	3.5	3.6
10E	14765	7-	4	11	Ø	1	12	10	41	. 4.1	4.1
- IOP	14781	DERD				-					
UBE	14782	6	5	11	0	0	11	11	3.3	3.5	3.1
1911 -	14783	1	5	6	Ø	1	7	8	4. 7	53	4. E
1111	14784	NOT	PREG	INANT							
UL HE	14785	7	4	11	0	1	12	12	4.4	4.3	4, S
OQE:	14797	5	- 7	12	0	0	12	11	3.8	3.9	3.8

10 077947

3MA00326745

Appendix VI (Continued)

Oral Teratology Study of FM-3422 in Rats Individual Litter Data With Mean Fetus Weights

Hose Group and Rat No.		V	VIABLE FETUSES DEAD M F TOTAL FETUSES				RESOR IMPLAN CORPEA PTION TATION LUTEA SITES SITES			FET	US WI (G) F
<u>;7.5</u>	5 mg/kg/di	ey	_		_						
For	15395	4	5	9	Ū.	0	9	9	3.7	39	3.5
1.104	15396	3	5	8	Û	0	8	9	3.6	3.8	3.5
1-OF:	15397	5	6	11	0	0	11	10	4.3	4.5	4.2
្រហ្	15398	3	8	11	Ú	1	12	11	4.1	4.4	3.9
POP.	15399	3	5	8	ម	2	10	8	4.0	4.3	3.8
$\{ x, y \}$	15415	6	6	12	Ü	1	13	13	3.9	4.0	3.8
1 a pFr	15416	9	3	12	Û	Û	12	11	3.8	2. S	3.8
1.1	15417	8	3	11	Û	0	11	11	4.2	4 3	4 1
$\{ (y_i)_{i \in I}\}$	15418	- 2	8	10	Ū	1	11	12	4 7	ธิด	4.6
ineR	15419	6	8	14	Ø	ā	14	14	3.9	4.1	3.6
1 OF	14766	5	3	8	6	3	11	13	3.7	3.8	3.5
100H	14767	4	2	£	0	2	8	8	4.6	4.1	3.9
1.61	14768	3	8	11	9	0	11	11	3.8	3.9	3.7
1 MFC	14769	5	4	9	Ø	Ø	9	9	4.0	4.6	3.9
1 OF	14770	5	4	9	Ø	1	10	10	4.1	4 3	2.9
E OF	14786	NOT	PREGNANT							••• =	
1 OR	14787	- 4	5	9	0	0	9	10	4.1	4.2	4.1
1990E)	14788	4	7	11	0	1	12	12	4 4	4 २	4 4
F OF	14789	1	8	9	0	1	10	11	रह	3.8	
Equil:	14790	1	7	8	0	ī		11	4 4	41	4 5
MOR	14798	7	2	9	Ø	ø	÷	8	4.3	4.3	4. 0

E

ł

: