EXHIBIT M.

- OBRIENEGERE

Augus 15, 2014

Ms. Margaret Valis
Chief, Impact Assesmment and Mebeocology Section
New York State Deportesent of Environmental Conservation
625 Broatway
Albary, NY 12233

KK: Taconk Plastics - DEC. 1D: 4-3854-00004
FILE. 10660/51812

Dear Ms. Valis:
On Aeril 2e, 2014, 0^{\prime} Bries \& Gerv subaitied an alr divpersion modeling protocol to the New York State Deportment of Ervirormental Conservation (NYSDEC) on behalf of Taconic for its facility locabed in Peternborgh, New York. A copy of the protocol is contained in Attachment A This leter report presents the resalts of the dipersion modeling

NYSDEC APPROVAL

On)une 2, 2014, NYSDEC via emal, approved the protocol with the exoeption of the receptor gid and emission rates NFSDEC recommended that the receptor grid have 70 reeter spacing to a distance of 1 holometer from the facility. 100 meter spaching from a distance of 1 to 2 kilometers, and 250 meter spacing from a distance of 2 to 5 alloweters. This change has been incorporated into the analysis. In addrion, the latest AERMOD versioe (Verion 14134) was emploged.
Mr. Don Welsted, NTSDEC. Aetgon IV air permit engineer, appeoved the emision rates showen in Table 1 for use in the model, with the understasding that addicional modeling will be performed asing the results of upoorring source besting to be condacted in acopedance with a condition that will be inchaded in Thconic's revised State Farlity Permit, ance issted by NISDEC

RESULTS

Stack parameters esed is the model ary preserted in Table 1 of Attarkment A. Fiease note that each of the foar individeal stacks was included in the model independently (Ce, a lyppothetical semblened stark was not used).
Tables 2 and 3 present a mummary of the medeling results. As discussed in the protocol. NYSDEC Arnual Guideline Concentrition (AGC) and Shoet-term Guideline Concentration (SGC) valaes fer hydrogen flaaride ingacts were ased as a fint-Jevel comparisont Bowever, initial revalts indicated a pobential exeeedance of the ABC Therefore, model reselbs were compared to the flaoride atandards contained in 6 NrCRR 257-8.3(b). Aa shown in Tables 2 and 3, predicted concentrations are below applicatle AGCs, SCCs and the New York Stite flowride standards.
Blectronic coples of the MERMOD ingut and eutput files, BPIP input and output files, ABRMAP inpot and output fies. DEM Ales and meteorological divta files are incladed on the enclosed CD.

Ma. Margant Valla
Anyat 45,2014

Fube 1

Please feel free to concact Cris Hine at [518] 724-7259 or Kade Cooper at [315] 956-6205 with any questions or conments.

Very tivly yours.

OBBRIEN \& GERE ENGINEERS, INC.

Cris Hine
Project Associate

O'BRIEN \& GERE ENGINEERS, INC.

Mathew Traister, PE
Vice President

```
Attichments: Table 1-Summary of Emission Rates
    Table 2 - Summary of AEKMOD Results
    Table 3-5ummary of AEZMOD Resutts - Hydrogen FlaoriSe
    Attachmont A - Apeil 2014 Modeling Protocol
```

ce: Doo Welsted - NYSDEC
Karen Toth - Tacoaic
Katie Cooper - 0Brien 6 Gere

Taconic Plastics
 Petersburgh, New York

Tahle 1 - Summary of Emission Rates

gietrolnte	ces		teseyt	Estaxer	Elusty	1rewet
nemersta	Nes-45	Was revaly	-	6avio	6-0wid	torn
			$=$	53	83	105
Mipl Aoryly	S43-214	Mas Hively [im/a	Intet	-	-	-
		Potendid honal/\%/ry	0.4	-	-	-
Derliplene Clynel Mesolelyl	\$13 344	Mas Hivity $\mathrm{Pa} /$	4-0t-05	=	$=$	$=$
		Patental dineal/b/ry	bal	-	-	-
Rinetylamineplyanol	108418	Hexitourly $1 \mathrm{~m} / \mathrm{Mr}$	4.00-05	-	-	-
		Hamend Anmab/b/ri	0.45	-	-	-
Ftyplderitate	141804	Hex Hruly $\mathrm{TH}_{\text {/ay }}$	8978	$=$	$=$	$=$
		Hatenal Aneyal [\%/ri	68	-	-	-
fiypensen	300-41-4	Mex Noury filloy	Ela	-	-	-
		Roteded Ninal/tira	433	m	m	$=$
maptane	Se3-6id	Elec Hivaly [/m/M	20061	-	-	-
		Pationtel Arnual Ibirs	55	$=$	-	$=$
EMlisege Pluatile	Ten+3931		-	cipet	dipy	Ecas
		Poneotid Anmal/\%/ril	-	105	318	712
herivimen	3-385	Mertwry		$=$	$=$	$=$
		Ratertial Antua//b/ri	644	-	-	-
heprepenel	(9743-1		EDIA	-	-	-
		Premal menal/t/ri	124	m	-	m
Netoleum Moplate	4402-43	Max Hourly [1/4)	20 ct	-	-	-
			12	$=$	$=$	-
fulaene	spereis	Hax Hivale im/al	bly	-	-	-
		Pamend/Annua/b/ry	4,90	$=$	$=$	$=$
Nimpl duntete	108-95-4	Hax Horly $1 \mathrm{~N} / \mathrm{M} /$	40805	$=$	$=$	$=$
		lamenal hnnat/b/et	11)	-	-	-
Splare	13Nap	tex Heary $1 \mathrm{M} / \mathrm{M} 1$	2as	=	=	=
		Pmentid Ansal/b/ri	2需	-	-	-

tale

Taconic Plastics Petersburgh, New York

Tahle Z - Summary of AERMOD Results

guatringe	ces	Angery	Ifriven	burwinty (exiverimetis?	herlite Terastiontery	fersturs	Feremet cishayez
			(4)1	matishay	(6) ${ }^{\text {a }}$		E)
Nowele	Wes-42-7	teser			0.52	2,400	c.
		Linual			8585	180	41
Buty haylar	243-424	trater	3-600	M31	coole	-	-
		Annel	39606	381	15004	8	el
Desthylore Elpers	113-304	1 mer	4 cac	981	tover		4
		Annal	4 Ex 05	3 x	15-64	now	cl
Werethlamineptha	108414	LHery	4 ER-05	981	E00e4	$=$	-
		lnexal	4eres	31	158-04	23	cl
Itiyl Aneitete	14174	L/iser	DPIS	3×1	10	$=$	$=$
		hwiyl	beta	318	Cseat	2100	cl
Ityphenase	106-41-4	1-60\%	-	M13	69	-	-
		ANMVI	pevi	148	a33		c)
Heptase	58.804	1-4er	Eaces	981	ass	31same	4
		ANMal	Pa08	38	Ems	1900	4
Netwese Heasder	Tex+313	Lemer			38	38	*r
		Anval			036	d09t	341
Heltutane	7808	IVerer	4.6808	M1	Pores	210me	4
		Mnerl	4 migs	184	1.85-64	-	-
hegregesel	18743-4	1-iser	0.014	34.1	43	74,000	el
		Altall	beta	14:	Cass	7800	41
Netwelean Raphohe	408L-5	L-ber	Elated	5×1	a.s	$-$	-
		Anval	89064	134	noss	1220	*1
Teluene	toener	times	63	541	M	18а6!	4
		innal	033	381	15	5,000	el
Nayidentate	1084ber	1-imer	E.303	M1	016	1909	4
		Ancal	Eats	331	souty	120	cl
Sylere	13may	1 Iner	bas	3×1	23		4]
		Anval	0.8	$3 \text { 3! }$	± 0	100	cl
Lexter							
3	nesde.						
3							
3							
4							

Taconic Plastics
Petershurgh, New York
Table 3-Summary of ARRMOD Results - Hydrogen Fluoride

cosmburat		Averatist A-Man	hulita formerytirl	mer asol?	Pryctictacrs
			(19)	19157	(2)
Mranden inaervat	netirn-4	2ricy	14	1.7	37
		34 itcor	178	2.45	44
		1 Wherk	1.3	185	7
		1 Hisoth	$\underline{24}$	E.8	35
Eluti					
$\frac{5}{2}$	Freselty kirey fresis vices	$\frac{x \text { mesel }}{15 \times 191}$			

April 2014
Modeling Protocol

Modeling Protocol

Taconic Petersburgh, New York

April 2014

Modeling Protocol

Taconic
Petersburgh, New York
-uprastrased
Matrisw Thaster ple

TABLE OF CONTENTS

List of Tables I
List ef Figures. -1

1. Introdection 1
2. Dackground 2
2.1 Tacenic Sto Lecation and Description 2
2.2 Taconic Emissions 2
3. Modeling Methsdology 3
3.1 Model Selection and Use 3
3.2 Urbas/karal Classification -3
3.3 Good Engineering Practice Stack Height Analyots 3
3.4 Metesedogical Data 3
3.5 Receptar Locationa. 4
3.6 Assessment of Inpacts 4
4. Modeling Report Foernat. -5
5. References 6
LIST OF TABLES
1 Sunmary of Stack Parameters
2 Summary of Model Optioas
LIST OF FIGURES
1 Site Location Map
2 Facility Plot Plan
3 Bernington, Versions Windrose
4 ABaty, New York Windruse
6. INTRDDUCTION

The Taconic facility located ia Petersburgh, NY mannfactures PTFE and silicone fiberglass/Labric products for the food processiag industry and other industrial applications, inclading lamisabed boands for the fabricatian of printed circut boards. Buildings 4,5,6, and the proposed new Buildisg 11 operabe PTFE surface coaters, where a PTFIt corspliant coating is applied to fherglass and cured in propane-fred vertical owens.

The llufldingS fume elininator (Emission Potnt 00002) recelves emissions from stx Bulling 4 ovens and nime Buliding 5 ovens, The Iluilding 6 fume eliminator [Emission Point 00010) recelves emissions from four fluilding 6 ovens.

In addition to the FTFE coaters and ovens, Tacoalc operates an adhesive aurface coater and oven lis linalding 1. The room housing the coaber and oven is vented to a thermal isider (Kmission Foint 00001).

Taconic is applylag for an air permit modification to allow for construction and operation of additional PTFE coaters/owens that will vent to a new fame eliminator, referred to as Emission Folnt 00011. As a part of the permit application, New Yark State Department of Emiroamental Conservation (NYSDEC) has requerted that a faclity-wbde DMR-1 air diepersion modeling anabosis be performed. In adablon, NYSDEC has requested a modelisg protocol be nobmitzed before commencement of the modeling analysic. This modeling probocol hat been developed to meet that recpeent.
2. BACKGRDUND

2.1 TACONIC SITE LOCATICN AND DESCRIPTION

The location of the Taconic sibe is shown in Fligure 1. The faclliky is located within the Town of Petersburgh, New York. The sibe is located at the botton of a very steep valley in a bend where the valley changes from being oriented to the North/3suth bo beling oriented to the Northeast/Socthwest.

The facility is comprised of several buildings, withis which product manufacturing and administrative activides are performed.

Eneission points at the faolity that emit toxic contamisants liated in the NYSDEC Aneual Galdeline Concentration (AGC)/Short-term Guideline Concentration (SCC) tables wili be included in the analysis. Source parameters for these emistion points are iummartard in Table 1.

A building plot plan depicting tier helghtes and stack locations is included as Pigure 2.

2.2 TACONIC EMISSONS

Emission rabes to le esed in the analysis will be previded to NYSDEC Region 4 under separate cover. It is expected that the contaminaet liat will cossist of hydrogen flucride aed varlous volatile erganic compounds [VOC].

3. MODELING METHODOLOGY

A refined modeling analysis will be performed. This analysis will follow generaily accepted modeling princisles contained in guibdance docvenents inclading.

- NYSDECDAR-10
- NYSDECDAR-1
- USEPA Rowhiot io the Guldelive on Air Quality Models (aka Appendix W)

3.1 MODEL SELECTION AND USE

The curreet version of the USEPA AERMOD modeling systen (Versien 13350) will be used to evaluate tomicair quality imparts from the Taconic fachity. The AERMOD model was selected primarily for the following reasons:

* USEPA and NYSDEC have approved the general use of the model for air quality dispersion malyais as a result of the model assumptions and methods being consistent with those referenced in the Guideline on Air Qualky Medets.
* The results from the AESMOD mbdel are appropriats for addresing complatce with the 1-tour and annsal SOCs and AGCs as is predicss the maximumi 2 -horr and ansual impacts at each recepter,

The AERMOD model has several options aed leatures that enable it to be adapted to a wide range of specific applicabions, A complete listing of corrently proposed model option "switches" to be used is included as Table 2.

3.2 URRAN/RURAL CLASSIFICATION

A lasd use review was performed to evaluate whether rural or urban dispersion parameiers should be used in the analysis. This procedure involved evaluating the presence of varioss induatrial, commerdal residential and agricultaral/nataral areas within a three klometer radius circle ctatered on the Taconic faclity (Auer scherne). If more than हity percent of the area within this circle were designated induatrat, commerctal and corpact residental urban dospersion parampters would be used otherwise, the modeling woald use rural dispersion paramesers. A review of the topographic map area and aerial photos surrocsding the ske revealed that the arva within three kilemeters of the site was predominately rural. Thas, based se thik analjvis, rural diepersims curves will be used in the analysis.

3.3 GOOO ENGNEERNG PRACTICE STACK HEIGHT ANALYSTS

USEPA provides specific guidance for caloulating Good Engineering Practice (GEP) stack height and for evalaating whether building downwash will eccur (USEPA, 2003). GEP stack height is defined by U5EPA as the height of the strocthre plus 1.5 tienes the lesser of the structure beight or projected width. If the stack height for a murce is less than the helght identited axing CGP guldeltnes, based on the dimensions of nearby baflingh, then the potential for building downwash to occar enists and is to be conaidered in the modeling analysis.
The Traconic stacks in this analysis are less than GBP stack height. Therefore, 36 directional building heights and widths data will be entimated asing the USEPA Ilulding Profle Ingut Program, FRME verion (IFFP-PBME) and incorporated iato the AERMOD model.

3.4 METEOROLOGICAL DATA

The ciosest National Wewher Service (NWS) atation is located in Benningben, New York. A windrose depicting wind speed and wind direction from Bensington for years 2008-2012 is shown in Figure 3. Given the valley orientation an the Tacosic site, and the wind directien distribution at Bensingtoe, it is unilkely that the Benniageo data is representative of the whids at the stbe.
Albarg, New York is the next closest NWS station to the Tacoric facilly. A windrose from Albany for years 2009. 2013 is shown is Figure 4. The whdrase shows high frequercies of seutherfy aed west northwest winds. Since the valley orfentation at the site weuld llely create a dominance of southerly winds, the Alhasy meteorelogical
data is proposed te be used in the analysis. Opper-alr data from Albany woold also be used. NYSDEC has provided the necescary pre-processed dita to be used in the analysis.

3.5 RECEPTOR LOCATIONS

The analyals will uclize a Carteslan erid of receptors with a spacing of 70 meters extending to a distance of 1 kilometer from the center of the grid. A scond Cartestan grid, with a spacing of 250 meters, will extend from 1 to 3 kilometers. The center of the grid will be at the approwimate center polat of the Taconic faclity. Receptors will be added, as appropriate, to locate the maximam impaet if it is outside of the 3 kilometer area

The currest verston of AERMAP (Version 11103) will be used to calculate the reorptor elevations and appropriate hill height valees. Tea meter resolution Digital Elrvation Model (DDM) data will be obtained from the Corsell Cugir webaite for atflirathon in AEPMAP.

3.5 ASSESSMINT OF IMPACTS

Predicted impacts from the Taconic facility will be compared againit publisted NYSDEC. ACC/SCC guideline values

For hydregen flooride, the poblished MCC and SGC values will serve as a first level comparison. Should the model results indicate a potential exceedence of the hyrdrogen fluoride SEC and/ar AGC, 12 -heur, 24 -hour, and monthly predicted impacts of fionide embisions from the model will be compared against the standards in Title 6 of the New York Code of Rules and Regolations (6 NYCRR) 257-8.3(b) 24-bour impacts will be used as a sarrogate for weekly impacts.
4. MODEUNG REPORT FORMAT

A modeling report will be provided and will indude comparisons of the maximum projected impact concentrations to the published NYSDEC MCC/SCC values, and flueride standards, if applicable. The approved protocol will be iscluded as an attachment. Blectroaic coples of AERMOD laput and output flies, BPIP input and output ilies, AERMAP ingut and output files, DEM files and meteorological data files will be submitted on compact disc.

5. REFERENCES

Auer, A月 1978. Correlation of Land Dse ond Cover with MetearnlogivalAnomalles. |ournal of Applied Meteorelogy, 17.636643.

NYSDEC, 1997. New York State Department of Emvironmental Conservation, DAR- I:NYSDEC Guidelines for the Control of Towic Ambient Air Conteminonss.

MISDEC, 2006. New York State Department of Envirenmental Conservation, DAR.IONTSOEC Gublelines on Olopersion Modeling Procestures for Air Quality /mpoct Anolysis

USEPA, 1985. Gudeline for Determinotion of Cood Eegiverring Proctice Stock Hejett (Technical Suppart Docwnent of the Stack Feight Requlations) (Kevisef). US. Enviroamental Protective Agency. 1PA-450/4, 80/023R Wachington, DCiUSEPA.

USEPA, 2004. User's Gulde for the AMS/EPA Begwlotovy Model - AERMOD, Research Triangle Park, NC. EPA, Office of Nr Quality Flaning and Sandards. EPA-454/B-03-401

USBPA 2005. Anvition to the Guddeline on AIr Qually Modats, Appeadix W to 40 CFB Part 51.

Taconic Plastics
Petershurgh, New York
Table 1 - Summary of Stack Parameters

Tevines	Trintier	3nchlerutior						
hat 1	Helrt Evictic	$\begin{aligned} & \text { yTM } \\ & \text { El } \end{aligned}$	琞		wivet	trevichetar	Pate Inta leflal	Disnetrr [-춘)
Geuct	tivicieg t ©fiduer	6-494	473325	7h	8	356	5×06	\$7x19
000cg	Pwiting S Paty	E3425	4733175	T\%	45	37	24.000	38
gexil	Mulkngichat	chater	draver	N3	49	123	24.006	15
xeoul	Sinderilitum	c3478	47 M 74	29\%	48	192	54090	11
Estes:								
1								
I	Stack paramoten were mppled ity faone.							

Taconic Plastics

Petersburgh, New York

Table 2 - Summary of Model Options

Calculations
Meceptor Orientation
Dispersion Ceefficlents
Stack To Downwash
Bulding Downaath
Drectional Dependent Bulding Dimersions
Terrain
Meteorsiogy

Refined Analyis. \$-Hour and Arrwal Averages Cartedan (79 meters to 1 km and 250 meters 601 km)

Rural
Yes
Yes
Yes
Simple, Complex and intermedate: MOMNOD Algorthas $2009-2013$ - Mhary, MY [Surface S Upper Ar)

Nates:

TACONIC PETERSBURG, NEW YORK

SITE LOCATION

More than Engineering Solutions

